This website does readability filtering of other pages. All styles, scripts, forms and ads are stripped. If you want your website excluded or have other feedback, use this form.

Computability Logic: Literature

Computability Logic

(CoL)


Section 9

Literature

      9.1   Selected papers on CoL by Japaridze

      9.2   Selected papers on CoL by other authors

      9.3   PhD theses, MS theses and externally funded projects on CoL

      9.4   Lecture notes on CoL, presentations and other links

      9.5   Additional references

 9.1 Selected papers on CoL by Japaridze

  • [Jap19c]  G.Japaridze. Fundamentals of computability logic.  Research Trends in Contemporary Logic. M.Fitting, M.Pourmahdian, A.Rezus and A.Daghighi, eds. (under review)  Preprint


    9.2 Selected (SCI-indexed) papers on CoL by other authors

    9.3  PhD theses, MS theses and externally funded projects on CoL

    • W.Xu. A Study of Cirquent Calculus Systems for Computability Logic. Research project funded by the National Science Foundation of China (61303030) and the Fundamental Research Funds for the Central Universities of China (K50513700).  Xidian University, 2013-2016.
    • G.Japaridze. A Logical Study of Interactive Computational Problems Understood as Games. Research project funded by the National Science Foundation of US (CCR-0208816). Villanova University, 2002-2006.


     9.4 Lecture notes, presentations and other links

     
    9.5 Additional references


    • [Abr94] S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative linear logic. Journal of Symbolic Logic 59 (2) (1994), pp. 543-574.
    • [Avr87] A. Avron. A constructive analysis of RM. Journal of Symbolic Logic 52 (1987),  pp. 939-951.
    • [Bla72] A. Blass. Degrees of indeterminacy of games. Fundamenta Mathematicae 77 (1972), pp. 151-166.
    • [Bla92] A. Blass. A game semantics for linear logic. Annals of Pure and Applied Logic 56 (1992), pp 183-220.
    • [Bus86] S. Buss. Bounded Arithmetic (revised version of Ph. D. thesis). Bibliopolis, 1986.
    • [Cha81] A. Chandra, D. Kozen and L. Stockmeyer. Alternation.     Journal of the ACM 28 (1981), pp. 114-133.
    • [Clo92] P. Clote and G. Takeuti.  Bounded arithmetic for NC, ALogTIME, L and NL. Annals of Pure and Applied Logic 56 (1992), pp. 73-117.
    • [Coo10] S. Cook and P. Nguyen. Logical Foundations of Proof Complexity. Cambridge University Press, 2010.
    • [Fel85] W. Felscher. Dialogues, strategies, and intuitionistic provability. Annals of Pure and Applied Logic 28 (1985), pp. 217-254.
    • [Gir87] J.Y. Girard. Linear logic. Theoretical Computer Science 50 (1) (1987), pp.  1-102.
    • [Goe58] K. Goedel. Ueber eine bisher noch nicht benuezte Erweiterung des finiten Standpunktes. Dialectica 12 (1958), pp. 280-287.
    • [Gol06] D. Goldin, S. Smolka and P. Wegner (editors). Interactive Computation: The New Paradigm. Springer, 2006.
    • [Gol89] S. Goldwasser, S. Micali and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM Journal on Computing 18 (1989), pp. 186-208.
    • [Gug07] A. Guglielmi. A system of interaction and structure. ACM Transactions on Computational Logic 8 (2007), No.1, pp. 1-64.
    • [Haj93] P. Hajek and P. Pudlak. Metamathematics of First-Order Arithmetic. Springer, 1993.
    • [Hey71] A. Heyting. Intuitionism: An Introduction. Amsterdam, North-Holland Publishing, 3rd revised edition, 1971.
    • [Hin73] J. Hintikka. Logic, Language-Games and Information: Kantian Themes in the Philosophy of Logic. Clarendon Press 1973.
    • [Hin97] J. Hintikka and G. Sandu. Game-theoretical semantics. In: Handbook of Logic and Language. J. van Benthem and A ter Meulen, eds. North-Holland 1997, pp. 361-410.
    • [Kle52] S.C. Kleene. Introduction to Metamathematics. D. van Nostrand Company, New York / Toronto, 1952.
    • [Kra95] J. Krajicek.  Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge University Press, 1995.
    • [Lor61] P. Lorenzen. Ein dialogisches Konstruktivitätskriterium. In: Infinitistic Methods. In: PWN, Proc. Symp. Foundations of Mathematics, Warsaw, 1961, pp. 193-200.
    • [Par71] R. Parikh. Existence and feasibility in arithmetic. Journal of Symbolic Logic 36 (1971), pp. 494-508.
    • [Par85] J. Paris and A. Wilkie. Counting problems in bounded arithmetic. In: Methods in Mathematical Logic. Lecture Notes in Mathematics No. 1130. Springer, 1985, pp. 317-340.
    • [Sch06] H. Schwichtenberg. An arithmetic for polynomial-time computation. Theoretical Computer Science 357 (2006), pp. 202-214.