This page uses content from Wikipedia and is licensed under CC BY-SA.
Mathematics is the study of numbers, quantity, space, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.
Banach–Tarski paradox Image credit: Benjamin D. Esham |
The Banach–Tarski paradox is a theorem in set-theoretic geometry which states that a solid ball in 3-dimensional space can be split into a finite number of non-overlapping pieces, which can then be put back together in a different way to yield two identical copies of the original ball. The reassembly process involves only moving the pieces around and rotating them, without changing their shape. However, the pieces themselves are complicated: they are not usual solids but infinite scatterings of points. A stronger form of the theorem implies that given any two "reasonable" solid objects (such as a small ball and a huge ball) — solid in the sense of the continuum — either one can be reassembled into the other. This is often stated colloquially as "a pea can be chopped up and reassembled into the Sun".
View all selected articles | Read More... |
The sieve of Eratosthenes is a simple algorithm for finding all prime numbers up to a specified maximum value. It works by identifying the prime numbers in increasing order while removing from consideration composite numbers that are multiples of each prime. This animation shows the process of finding all primes no greater than 120. The algorithm begins by identifying 2 as the first prime number and then crossing out every multiple of 2 up to 120. The next available number, 3, is the next prime number, so then every multiple of 3 is crossed out. (In this version of the algorithm, 6 is not crossed out again since it was just identified as a multiple of 2. The same optimization is used for all subsequent steps of the process: given a prime p, only multiples no less than p^{2} are considered for crossing out, since any lower multiples must already have been identified as multiples of smaller primes. Larger multiples that just happen to already be crossed out—like 12 when considering multiples of 3—are crossed out again, because checking for such duplicates would impose an unnecessary speed penalty on any real-world implementation of the algorithm.) The next remaining number, 5, is the next prime, so its multiples get crossed out (starting with 25); and so on. The process continues until no more composite numbers could possibly be left in the list (i.e., when the square of the next prime exceeds the specified maximum). The remaining numbers (here starting with 11) are all prime. Note that this procedure is easily extended to find primes in any given arithmetic progression. One of several prime number sieves, this ancient algorithm was attributed to the Greek mathematician Eratosthenes (d. c. 194 BCE) by Nicomachus in his first-century (CE) work Introduction to Arithmetic. Other more modern sieves include the sieve of Sundaram (1934) and the sieve of Atkin (2003). The main benefit of sieve methods is the avoidance of costly primality tests (or, conversely, divisibility tests). Their main drawback is their restriction to specific ranges of numbers, which makes this type of method inappropriate for applications requiring very large prime numbers, such as public-key cryptography.
The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.
Project pages
Essays
Subprojects
Related projects
Algebra | Arithmetic | Analysis | Complex analysis | Applied mathematics | Calculus | Category theory | Chaos theory | Combinatorics | Dynamic systems | Fractals | Game theory | Geometry | Algebraic geometry | Graph theory | Group theory | Linear algebra | Mathematical logic | Model theory | Multi-dimensional geometry | Number theory | Numerical analysis | Optimization | Order theory | Probability and statistics | Set theory | Statistics | Topology | Algebraic topology | Trigonometry | Linear programming
Mathematics (books) | History of mathematics | Mathematicians | Awards | Education | Literature | Notation | Organizations | Theorems | Proofs | Unsolved problems
General | Foundations | Number theory | Discrete mathematics |
---|---|---|---|
| |||
Algebra | Analysis | Geometry and topology | Applied mathematics |
ARTICLE INDEX: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9) |
MATHEMATICIANS: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z |
Algebra | Analysis | Category theory |
Computer science |
Cryptography | Discrete mathematics |
Logic | Mathematics | Number theory |
Physics | Science | Set theory | Statistics |