This page uses content from Wikipedia and is licensed under CC BY-SA.
Alcohol (drug)
Active ingredient in alcoholic beverages
This article is about ethanol as a psychoactive or recreational substance. For the class of chemical compounds, see Alcohol. For types and characteristics of alcoholic beverages, see Alcoholic drink. For medical uses of alcohols, see Alcohols in medicine. For other uses, see Ethanol.
Constant-rate elimination at typical concentrations:[8][9][7] • Range: 10–34 mg/dL/hour • Mean (men): 15 mg/dL/hour • Mean (women): 18 mg/dL/hr At very high concentrations (t1/2): 4.0–4.5 hours[6][5]
Alcohol has a variety of short-term and long-term adverse effects. Short-term adverse effects include generalized impairment of neurocognitive function, dizziness, nausea, vomiting, and hangover-like symptoms. Alcohol can be addictive to humans, as in alcoholism, and can result in dependence and withdrawal. It can have a variety of long-term adverse effects on health, for instance liver damage,[14]brain damage,[15] and its consumption is the fifth leading cause of cancer.[16][failed verification] The adverse effects of alcohol on health are most important when it is used in excessive quantities or with heavy frequency. However, some of them, such as increased risk of certain cancers, may occur even with light or moderate alcohol consumption.[17][18] In high amounts, alcohol may cause loss of consciousness or, in severe cases, death.
Alcohol has been produced and consumed by humans for its psychoactive effects for almost 10,000 years.[25] Drinking alcohol is generally socially acceptable and is legal in most countries, unlike with many other recreational substances. However, there are often restrictions on alcohol sale and use, for instance a minimum age for drinking and laws against public drinking and drinking and driving.[26] Alcohol has considerable societal and cultural significance and has important social roles in much of the world. Drinking establishments, such as bars and nightclubs, revolve primarily around the sale and consumption of alcoholic beverages, and parties, festivals, and social gatherings commonly involve alcohol consumption. Its use is also related to various societal problems, including driving accidents and fatalities, accidental injuries, sexual assaults, domestic abuse, and violent crime.[27] Alcohol remains illegal for sale and consumption in a number of countries, mainly in the Middle East.
Ethanol is typically consumed as a recreational substance by mouth in the form of alcoholic beverages such as beer, wine, and spirits. It is commonly used in social settings due to its capacity to enhance sociability.
The amount of ethanol in the body is typically quantified by blood alcohol content (BAC); weight of ethanol per unit volume of blood. Small doses of ethanol, in general, are stimulant-like[28] and produce euphoria and relaxation; people experiencing these symptoms tend to become talkative and less inhibited, and may exhibit poor judgement. At higher dosages (BAC > 1 g/L), ethanol acts as a central nervous systemdepressant,[28] producing at progressively higher dosages, impaired sensory and motor function, slowed cognition, stupefaction, unconsciousness, and possible death. Ethanol is commonly consumed as a recreational substance, especially while socializing, due to its psychoactive effects.
Caloric content
Ethanol is a source of energy and pure ethanol provides 7 calories per gram. For distilled spirits, a standard serving in the United States is 44 ml (1.5 US fl oz), which at 40% ethanol (80 proof), would be 14 grams and 98 calories. Wine and beer contain a similar range of ethanol quantity for servings of 150 ml (5 US fl oz) and 350 ml (12 US fl oz), respectively, but these beverages also contain non-ethanol food energy. A 150 ml serving of wine contains 100 to 130 calories. A 350 ml serving of beer contains 95 to 200 calories. According to the U.S. Department of Agriculture, based on NHANES 2013–2014 surveys, women in the US ages 20 and up consume on average 6.8 grams/day and men consume on average 15.5 grams/day.[29] Ignoring the non-alcohol contribution of those beverages, the average energy contributions are 48 and 108 cal/day, respectively. Alcoholic beverages are considered empty calorie foods because other than food energy they contribute no essential nutrients.
A 2010 study ranking various illegal and legal drugs based on statements by drug-harm experts. Alcohol was found to be the overall most dangerous drug, and the only drug that mostly damaged others.[30]
Alcohol causes a plethora of detrimental effects in society, both to the individual and to others.[27] It is highly associated with automobile accidents, sexual assaults, and both violent and non-violent crime.[27] About one-third of arrests in the United States involve alcohol abuse.[27] Many emergency room visits also involve alcohol use.[27] As many as 15% of employees show problematic alcohol-related behaviors in the workplace, such as drinking before going to work or even drinking on the job.[27]Heavy drinking is associated with vulnerability to injury, marital discord, and domestic violence.[27] Alcohol use is directly related to considerable morbidity and mortality, for instance due to overdose and alcohol-related health problems.[31]
A 2002 study found 41% of people fatally injured in traffic accidents were in alcohol-related crashes.[32] Abuse of alcohol is associated with more than 40% of deaths that occur in automobile accidents every year.[27] The risk of a fatal car accident increases exponentially with the level of alcohol in the driver's blood.[33] Most drunk driving laws in the United States governing the acceptable levels in the blood while driving or operating heavy machinery set typical upper limits of legal blood alcohol content (BAC) at 0.08%.[34]
Over 40% of all assaults and 40 to 50% of all murders involve alcohol.[27] More than 43% of violent encounters with police involve alcohol.[27] Alcohol is implicated in more than two-thirds of cases of intimate partner violence.[27] In 2002, it was estimated that 1 million violent crimes in the United States were related to alcohol use.[27] Alcohol is more commonly associated with both violent and non-violent crime than are drugs like marijuana.[27]
Alcohol abuse and dependence are major problems and many health problems as well as death can result from excessive alcohol use.[27][31] Alcohol dependence is linked to a lifespan that is reduced by about 12 years relative to the average person.[27] In 2004, it was estimated that 4% of deaths worldwide were attributable to alcohol use.[31] Deaths from alcohol are split about evenly between acute causes (e.g., overdose, accidents) and chronic conditions.[31] The leading chronic alcohol-related condition associated with death is alcoholic liver disease.[31] Alcohol dependence is also associated with cognitive impairment and organic brain damage.[27] Some researchers have found that even one alcoholic drink a day increases an individual's risk of health problems.[38]
Addiction experts in psychiatry, chemistry, pharmacology, forensic science, epidemiology, and the police and legal services engaged in delphic analysis regarding 20 popular recreational substances. Alcohol was ranked 6th in dependence, 11th in physical harm, and 2nd in social harm.[39]
Alcohol can cause nausea and vomiting in sufficiently high amounts (varies by person).
Alcohol stimulates gastric juice production, even when food is not present, and as a result, its consumption stimulates acidic secretions normally intended to digest protein molecules. Consequently, the excess acidity may harm the inner lining of the stomach. The stomach lining is normally protected by a mucosal layer that prevents the stomach from, essentially, digesting itself. However, in patients who have a peptic ulcer disease (PUD), this mucosal layer is broken down. PUD is commonly associated with the bacteria H. pylori. H. pylori secrete a toxin that weakens the mucosal wall, which as a result lead to acid and protein enzymes penetrating the weakened barrier. Because alcohol stimulates a person's stomach to secrete acid, a person with PUD should avoid drinking alcohol on an empty stomach. Drinking alcohol causes more acid release, which further damages the already-weakened stomach wall.[40] Complications of this disease could include a burning pain in the abdomen, bloating and in severe cases, the presence of dark black stools indicate internal bleeding.[41] A person who drinks alcohol regularly is strongly advised to reduce their intake to prevent PUD aggravation.[41]
Ingestion of alcohol can initiate systemic pro-inflammatory changes through two intestinal routes: (1) altering intestinal microbiota composition (dysbiosis), which increases lipopolysaccharide (LPS) release, and (2) degrading intestinal mucosal barrier integrity – thus allowing this (LPS) to enter the circulatory system. The major portion of the blood supply to the liver is provided by the portal vein. Therefore, while the liver is continuously fed nutrients from the intestine, it is also exposed to any bacteria and/or bacterial derivatives that breach the intestinal mucosal barrier. Consequently, LPS levels increase in the portal vein, liver and systemic circulation after alcohol intake. Immune cells in the liver respond to LPS with the production of reactive oxygen species (ROS), leukotrienes, chemokines and cytokines. These factors promote tissue inflammation and contribute to organ pathology.[42]
Ethanol-containing beverages can cause alcohol flush reactions, exacerbations of rhinitis and, more seriously and commonly, bronchoconstriction in patients with a history of asthma, and in some cases, urticarial skin eruptions, and systemic dermatitis. Such reactions can occur within 1–60 minutes of ethanol ingestion, and may be caused by:[43]
genetic abnormalities in the metabolism of ethanol, which can cause the ethanol metabolite, acetaldehyde, to accumulate in tissues and trigger the release of histamine, or
true allergy reactions to allergens occurring naturally in, or contaminating, alcoholic beverages (particularly wine and beer), and
During the metabolism of alcohol via the respective dehydrogenases, NAD (nicotinamide adenine dinucleotide) is converted into reduced NAD. Normally, NAD is used to metabolize fats in the liver, and as such alcohol competes with these fats for the use of NAD. Prolonged exposure to alcohol means that fats accumulate in the liver, leading to the term 'fatty liver'. Continued consumption (such as in alcoholism) then leads to cell death in the hepatocytes as the fat stores reduce the function of the cell to the point of death. These cells are then replaced with scar tissue, leading to the condition called cirrhosis.
Ethanol is classified as a teratogen.[medical citation needed] According to the U.S. Centers for Disease Control (CDC), alcohol consumption by women who are not using birth control increases the risk of fetal alcohol syndrome. The CDC currently recommends complete abstinence from alcoholic beverages for women of child-bearing age who are pregnant, trying to become pregnant, or are sexually active and not using birth control.[45]
IARC list ethanol in alcoholic beverages are classified as a Group 1 carcinogens in human beings and argues that "There is sufficient evidence and research showing the carcinogenicity of acetaldehyde (the major metabolite of ethanol) which is excreted by the liver enzyme when one drinks alcohol."[46]
Other effects
Frequent drinking of alcoholic beverages is a major contributing factor in cases of elevated blood levels of triglycerides.[47]
Death from ethanol consumption is possible when blood alcohol levels reach 0.4%. A blood level of 0.5% or more is commonly fatal. Levels of even less than 0.1% can cause intoxication, with unconsciousness often occurring at 0.3–0.4%.[51]
Disulfiram inhibits the enzyme acetaldehyde dehydrogenase, which in turn results in buildup of acetaldehyde, a toxic metabolite of ethanol with unpleasant effects. The medication or drug is commonly used to treat alcoholism or alcohol abuse, and results in immediate hangover-like symptoms upon consumption of alcohol, this effect is widely known as astabuse effect.
Metronidazole
One of the most important drug/food interactions is between alcohol and metronidazole.
Metronidazole is an antibacterial agent that kills bacteria by damaging cellular DNA and hence cellular function.[55] Metronidazole is usually given to people who have diarrhea caused by Clostridium difficile bacteria. C. difficile is one of the most common microorganisms that cause diarrhea and can lead to complications such as colon inflammation and even more severely, death.
Patients who are taking metronidazole are strongly advised to avoid alcohol, even after 1 hour following the last dose. The reason is that alcohol and metronidazole can lead to side effects such as flushing, headache, nausea, vomiting, abdominal cramps, and sweating.[56][57] These symptoms are often called the disulfiram-like reaction. The proposed mechanism of action for this interaction is that metronidazole can bind to an enzyme that normally metabolizes alcohol. Binding to this enzyme may impair the liver's ability to process alcohol for proper excretion.[58]
The rate-limiting steps for the elimination of ethanol are in common with certain other substances. As a result, the blood alcohol concentration can be used to modify the rate of metabolism of methanol and ethylene glycol. Methanol itself is not highly toxic, but its metabolites formaldehyde and formic acid are; therefore, to reduce the rate of production and concentration of these harmful metabolites, ethanol can be ingested.[59]Ethylene glycol poisoning can be treated in the same way.
The precise mechanism of action of ethanol has proven elusive and remains not fully understood.[19][60] Identifying molecular targets for ethanol has proven unusually difficult, in large part due to its unique biochemical properties.[60] Specifically, ethanol is a very low molecular weight compound and is of exceptionally low potency in its actions, causing effects only at very high (millimolar (mM)) concentrations.[60][61] For these reasons, unlike with most drugs, it has not yet been possible to employ traditional biochemical techniques to directly assess the binding of ethanol to receptors or ion channels.[60][61] Instead, researchers have had to rely on functional studies to elucidate the actions of ethanol.[60] Moreover, although it has been established that ethanol modulates ion channels to mediate its effects,[21] ion channels are complex proteins, and their interactions and functions are complicated by diverse subunit compositions and regulation by conserved cellular signals (e.g. signaling lipids).[19][60]
Much progress has been made in understanding the pharmacodynamics of ethanol over the last few decades.[20][60] While no binding sites have been identified and established unambiguously for ethanol at present, it appears that it affects ion channels, in particular ligand-gated ion channels, to mediate its effects in the central nervous system.[19][20][21][60] Ethanol has specifically been found in functional assays to enhance or inhibit the activity of a variety of ion channels, including the GABAA receptor, the ionotropic glutamateAMPA, kainate, and NMDA receptors, the glycine receptor,[62] the nicotinic acetylcholine receptors,[63] the serotonin5-HT3 receptor, voltage-gated calcium channels, and BK channels, among others.[19][20][21][64][65] However, many of these actions have been found to occur only at very high concentrations that may not be pharmacologically significant at recreational doses of ethanol, and it is unclear how or to what extent each of the individual actions is involved in the effects of ethanol.[60] In any case, ethanol has long shown a similarity in its effects to positive allosteric modulators of the GABAA receptor like benzodiazepines, barbiturates, and various general anesthetics.[19][60] Indeed, ethanol has been found to enhance GABAA receptor-mediated currents in functional assays.[19][60] In accordance, it is theorized and widely believed that the primary mechanism of action is as a GABAA receptor positive allosteric modulator.[19][60] However, the diverse actions of ethanol on other ion channels may be and indeed likely are involved in its effects as well.[20][60]
Recently, a study showed the accumulation of an unnatural lipid phosphatidylethanol (PEth) competes with PIP2 agonists sites on lipid-gated ion channels.[66] This presents a novel indirect mechanism and suggests that a metabolite, not the ethanol itself, can effect the primary targets of ethanol intoxication. Many of the primary targets of ethanol are known to bind PIP2 including GABAA receptors,[67] but the role of PEth will need to be investigated for each of the primary targets.
In 2007, it was discovered that ethanol potentiates extrasynapticδ subunit-containing GABAA receptors at behaviorally relevant (as low as 3 mM) concentrations.[19][60][68][69] This is in contrast to previous functional assays of ethanol on γ subunit-containing GABAA receptors, which it enhances only at far higher concentrations (> 100 mM) that are in excess of recreational concentrations (up to 50 mM).[19][60][70]Ro15-4513, a close analogue of the benzodiazepine antagonist flumazenil (Ro15-1788), has been found to bind to the same site as ethanol and to competitively displace it in a saturable manner.[60][68] In addition, Ro15-4513 blocked the enhancement of δ subunit-containing GABAA receptor currents by ethanol in vitro.[60] In accordance, the drug has been found to reverse many of the behavioral effects of low-to-moderate doses of ethanol in rodents, including its effects on anxiety, memory, motor behavior, and self-administration.[60][68] Taken together, these findings suggest a binding site for ethanol on subpopulations of the GABAA receptor with specific subunit compositions via which it interacts with and potentiates the receptor.[19][60][68][71]
Rewarding and reinforcing actions
The reinforcing effects of alcohol consumption are mediated by acetaldehyde generated by catalase and other oxidizing enzymes such as cytochrome P-4502E1 in the brain.[72] Although acetaldehyde has been associated with some of the adverse and toxic effects of ethanol, it appears to play a central role in the activation of the mesolimbic dopamine system.[73]
With chronic alcohol intake, consumption of ethanol similarly induces CREB phosphorylation through the D1 receptor pathway, but it also alters NMDA receptor function through phosphorylation mechanisms;[74][75] an adaptive downregulation of the D1 receptor pathway and CREB function occurs as well.[74][75] Chronic consumption is also associated with an effect on CREB phosphorylation and function via postsynaptic NMDA receptor signaling cascades through a MAPK/ERK pathway and CAMK-mediated pathway.[75] These modifications to CREB function in the mesolimbic pathway induce expression (i.e., increase gene expression) of ΔFosB in the NAcc,[75] where ΔFosB is the "master control protein" that, when overexpressed in the NAcc, is necessary and sufficient for the development and maintenance of an addictive state (i.e., its overexpression in the nucleus accumbens produces and then directly modulates compulsive alcohol consumption).[75][77][78][79]
Central nervous system depression, anxiety supression, stress supression, sedation, nausea, possible vomiting, impaired motor and sensory function,impaired memory impaired cognition
>140
30
>0.14%
Decreased blood flow to brain, slurred speech, double or blurry vission.
300
65
0.3%
Stupefaction, confussion, numbness, dizzyness, loss of consciousness.
400
87
0.4%
Ethylic intoxication, drunkeness, enebriation, alcohol poisoning or possible death.
500
109
>0.55%
Unconsciouness, Coma and Death.
Recreational concentrations of ethanol are typically in the range of 1 to 50 mM.[70][19] Very low concentrations of 1 to 2 mM ethanol produce zero or undetectable effects except in alcohol-naive individuals.[70] Slightly higher levels of 5 to 10 mM, which are associated with light social drinking, produce measurable effects including changes in visual acuity, decreased anxiety, and modest behavioral disinhibition.[70] Further higher levels of 15 to 20 mM result in a degree of sedation and motor incoordination that is contraindicated with the operation of motor vehicles.[70] In jurisdictions in the United States, maximum blood alcohol levels for legal driving are about 17 to 22 mM.[81][82] In the upper range of recreational ethanol concentrations of 20 to 50 mM, depression of the central nervous system is more marked, with effects including complete drunkenness, profound sedation, amnesia, emesis, hypnosis, and eventually unconsciousness.[70][81] Levels of ethanol above 50 mM are not typically experienced by normal individuals and hence are not usually physiologically relevant; however, such levels – ranging from 50 to 100 mM – may be experienced by alcoholics with high tolerance to ethanol.[70] Concentrations above this range, specifically in the range of 100 to 200 mM, would cause death in all people except alcoholics.[70]
List of known actions in the central nervous system
Ethanol has been reported to possess the following actions in functional assays at varying concentrations:[61]
Some of the actions of ethanol on ligand-gated ion channels, specifically the nicotinic acetylcholine receptors and the glycine receptor, are dose-dependent, with potentiation or inhibition occurring dependent on ethanol concentration.[61] This seems to be because the effects of ethanol on these channels are a summation of positive and negative allosteric modulatory actions.[61]
Kinetics
Absorption
Ethanol can be taken orally, by inhalation, rectally, or by injection (e.g., intravenous),[7][86] though it is typically ingested simply via oral administration.[5] The oral bioavailability of ethanol is around 80% or more.[5][6] In fasting volunteers, blood levels of ethanol increase proportionally with the dose of ethanol administered.[86] Blood alcohol concentrations may be estimated by dividing the amount of ethanol ingested by the body weight of the individual and correcting for water dilution.[7]Peak circulating levels of ethanol are usually reached within a range of 30 to 90 minutes of ingestion, with an average of 45 to 60 minutes.[7][5]
Food in the gastrointestinal system and hence gastric emptying is the most important factor that influences the absorption of orally ingested ethanol.[7][86] The absorption of ethanol is much more rapid on an empty stomach than with a full one.[7] The delay in ethanol absorption caused by food is similar regardless of whether food is consumed just before, at the same time, or just after ingestion of ethanol.[7] The type of food, whether fat, carbohydrates, or protein, also is of little importance.[86] Not only does food slow the absorption of ethanol, but it also reduces the bioavailability of ethanol, resulting in lower circulating concentrations.[7] People who have fasted overnight have been found to reach peak ethanol concentrations more rapidly, at within 30 minutes of ingestion.[7]
At even low physiological concentrations, ethanol completely saturates alcohol dehydrogenase.[7] This is because ethanol has high affinity for the enzyme and very high concentrations of ethanol occur when it is used as a recreational substance.[7] For this reason, the metabolism of ethanol follows zero-order kinetics at typical physiological concentrations.[9] That is, ethanol does not have an elimination half-life (i.e., is not metabolized at an exponential rate), and instead, is eliminated from the circulation at a constant rate.[9][8] The mean elimination rates for ethanol are 15 mg/dL per hour for men and 18 mg/dL per hour for women, with a range of 10 to 34 mg/dL per hour.[9][7] At very high concentrations, such as in overdose, it has been found that the rate of elimination of ethanol is increased.[6] In addition, ethanol metabolism follows first-order kinetics at very high concentrations, with an elimination half-life of about 4 or 4.5 hours (which implies a clearance rate of approximately 6 L/hour/70 kg).[6][5] This seems to be because other processes, such as the MEOS/CYP2E1, also become involved in the metabolism of ethanol at higher concentrations.[5] However, the MEOS/CYP2E1 alone does not appear sufficient to fully explain the increase in ethanol metabolism rate.[6]
Some individuals have less effective forms of one or both of the metabolizing enzymes of ethanol, and can experience more marked symptoms from ethanol consumption than others.[87] However, those having acquired alcohol tolerance have a greater quantity of these enzymes, and metabolize ethanol more rapidly.[87]
Elimination
Ethanol is mainly eliminated from the body via metabolism into carbon dioxide and water.[7] Around 5 to 10% of ethanol that is ingested is eliminated unchanged in urine, breath, and sweat.[5] Ethanol or its metabolites may be detectable in urine for up to 96 hours (3-5 days) after ingestion.[5]
Ethanol is also known chemically as alcohol, ethyl alcohol, or drinking alcohol. It is a simple alcohol with a molecular formula of C2H6O and a molecular weight of 46.0684 g/mol. The molecular formula of ethanol may also be written as CH3−CH2−OH or as C2H5−OH. The latter can also be thought of as an ethyl group linked to a hydroxyl (alcohol) group and can be abbreviated as EtOH. Ethanol is a volatile, flammable, colorlessliquid with a slight characteristic odor. Aside from its use as a psychoactive and recreational substance, ethanol is also commonly used as an antiseptic and disinfectant, a chemical and medicinal solvent, and a fuel.
Ethanol has a variety of analogues, many of which have similar actions and effects. Methanol (methyl alcohol), isopropyl alcohol also called rubbing alcohol and 2-Methyl-2-Butanol 2M2BEther or Butanol are lightly toxic and are not so much safe for human consumption.[12] Methanol is the most toxic alcohol; the toxicity of isopropyl alcohol lies between that of ethanol and methanol, and is about twice that of ethanol.[88] In general, higher alcohols are less toxic.[88]n-Butanol is reported to produce similar effects to those of ethanol and relatively low toxicity (one-sixth of that of ethanol in one rat study).[89][90] However, its vapors can produce eye irritation and inhalation can cause pulmonary edema.[88]Acetone (propanone) is a ketone rather than an alcohol, and is reported to produce similar toxic effects; it can be extremely damaging to the cornea.[88]
Alcohol is fully legal and available in most countries of the world.[95] However, laws banning alcohol are found in the Middle East and some Indian states as well as some Native American reservations in the United States.[95] In addition, besides are several regulations on alcohol sales and use in many countries throughout the world.[95] For instance, some countries have a minimum legal age to purchase or consume alcoholic beverages. Also, some countries have bans on public intoxication.[95] Drinking while driving or intoxicated driving is frequently outlawed and it may be illegal to have an open container of alcohol or liquor bottle in an automobile, bus or aircraft.[95]
^Stogner JM, Eassey JM, Baldwin JM, Miller BL (September 2014). "Innovative alcohol use: assessing the prevalence of alcohol without liquid and other non-oral routes of alcohol administration". Drug and Alcohol Dependence. 142: 74–8. doi:10.1016/j.drugalcdep.2014.05.026. PMID25012895.
^"10th Special Report to the U.S. Congress on Alcohol and Health: Highlights from Current Research"(PDF). National Institute of Health. National Institute on Alcohol Abuse and Alcoholism. June 2000. p. 134. Retrieved 21 October 2014. The brain is a major target for the actions of alcohol, and heavy alcohol consumption has long been associated with brain damage. Studies clearly indicate that alcohol is neurotoxic, with direct effects on nerve cells. Chronic alcohol abusers are at additional risk for brain injury from related causes, such as poor nutrition, liver disease, and head trauma.
^Méndez M, Morales-Mulia M (June 2008). "Role of mu and delta opioid receptors in alcohol drinking behaviour". Current Drug Abuse Reviews. 1 (2): 239–52. doi:10.2174/1874473710801020239. PMID19630722.
^Alcohol : No Ordinary Commodity : Research and Public Policy. Babor, Thomas. (2nd ed.). Oxford: Oxford University Press. 2010. ISBN978-0-19-955114-9. OCLC656362316.CS1 maint: others (link)
^Hall JA, Moore CB (July 2008). "Drug facilitated sexual assault--a review". Journal of Forensic and Legal Medicine. 15 (5): 291–7. doi:10.1016/j.jflm.2007.12.005. PMID18511003.
^Beynon CM, McVeigh C, McVeigh J, Leavey C, Bellis MA (July 2008). "The involvement of drugs and alcohol in drug-facilitated sexual assault: a systematic review of the evidence". Trauma, Violence & Abuse. 9 (3): 178–88. doi:10.1177/1524838008320221. PMID18541699. S2CID27520472.
^Nutt D, King LA, Saulsbury W, Blakemore C (March 2007). "Development of a rational scale to assess the harm of drugs of potential misuse". Lancet. 369 (9566): 1047–53. doi:10.1016/s0140-6736(07)60464-4. PMID17382831. S2CID5903121.
^"More than 3 million US women at risk for alcohol-exposed pregnancy". Centers for Disease Control and Prevention. Retrieved 3 March 2016. 'drinking any alcohol at any stage of pregnancy can cause a range of disabilities for their child,' said Coleen Boyle, Ph.D., director of CDC's National Center on Birth Defects and Developmental Disabilities.
^"Alcohol". British Liver Trust. Retrieved 22 March 2019.
^ abYost DA (2002). "Acute care for alcohol intoxication"(PDF). 112 (6). Postgraduate Medicine Online. Archived from the original(PDF) on 14 December 2010. Retrieved 29 September 2007. Cite journal requires |journal= (help)
^Laizure SC, Mandrell T, Gades NM, Parker RB (January 2003). "Cocaethylene metabolism and interaction with cocaine and ethanol: role of carboxylesterases". Drug Metabolism and Disposition. 31 (1): 16–20. doi:10.1124/dmd.31.1.16. PMID12485948.
^Sakalo VS, Romanenko AM, Klimenko IA, Persidskiĭ I (1988). "[Effects of chemotherapy on regional metastases of non-seminomatous tumors of the testis]". Voprosy Onkologii. 34 (10): 1219–24. PMID3188424.
^Lukas SE, Orozco S (October 2001). "Ethanol increases plasma Delta(9)-tetrahydrocannabinol (THC) levels and subjective effects after marihuana smoking in human volunteers". Drug and Alcohol Dependence. 64 (2): 143–9. doi:10.1016/S0376-8716(01)00118-1. PMID11543984.
^Repchinsky C (ed.) (2012). Compendium of pharmaceuticals and specialties, Ottawa: Canadian Pharmacists Association.[full citation needed]
^Aronson IK, Rumsfield JA, West DP, Alexander J, Fischer JH, Paloucek FP (April 1987). "Evaluation of topical metronidazole gel in acne rosacea". Drug Intelligence & Clinical Pharmacy. 21 (4): 346–51. doi:10.1177/106002808702100410. PMID2952478. S2CID26030648.
^SCS Pharmaceuticals. Flagyl® IV and Flagyl® I.V. RTU® (metronidazole hydrochloride) prescribing information (dated 16 April 1997). In: Physicians’ desk reference. 48th ed. Montvale, NJ: Medical Economics Company Inc; 1998:2563-5.
^"Ethanol/metronidazole", p. 335 in Tatro DS, Olin BR, eds. Drug interaction facts. St. Louis: JB Lippincott Co, 1988, ISBN0932686478.
^McCoy HG, Cipolle RJ, Ehlers SM, Sawchuk RJ, Zaske DE (November 1979). "Severe methanol poisoning. Application of a pharmacokinetic model for ethanol therapy and hemodialysis". The American Journal of Medicine. 67 (5): 804–7. doi:10.1016/0002-9343(79)90766-6. PMID507092.
^ abcdeSpanagel R (April 2009). "Alcoholism: a systems approach from molecular physiology to addictive behavior". Physiological Reviews. 89 (2): 649–705. doi:10.1152/physrev.00013.2008. PMID19342616.
^ abcSöderpalm B, Lidö HH, Ericson M (November 2017). "The Glycine Receptor-A Functionally Important Primary Brain Target of Ethanol". Alcoholism, Clinical and Experimental Research. 41 (11): 1816–1830. doi:10.1111/acer.13483. PMID28833225.
^ abMelis M, Enrico P, Peana AT, Diana M (November 2007). "Acetaldehyde mediates alcohol activation of the mesolimbic dopamine system". The European Journal of Neuroscience. 26 (10): 2824–33. doi:10.1111/j.1460-9568.2007.05887.x. PMID18001279. S2CID25110014.
^ abcdeMalenka RC, Nestler EJ, Hyman SE (2009). "Chapter 15: Reinforcement and Addictive Disorders". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. p. 372. ISBN978-0-07-148127-4.
^Nestler EJ (December 2013). "Cellular basis of memory for addiction". Dialogues in Clinical Neuroscience. 15 (4): 431–43. PMC3898681. PMID24459410. Despite the Importance of Numerous Psychosocial Factors, at its Core, Drug Addiction Involves a Biological Process: the ability of repeated exposure to a drug of abuse to induce changes in a vulnerable brain that drive the compulsive seeking and taking of drugs, and loss of control over drug use, that define a state of addiction. ... A large body of literature has demonstrated that such ΔFosB induction in D1-type NAc neurons increases an animal's sensitivity to drug as well as natural rewards and promotes drug self-administration, presumably through a process of positive reinforcement
^McGovern P, Jalabadze M, Batiuk S, Callahan MP, Smith KE, Hall GR, Kvavadze E, Maghradze D, Rusishvili N, Bouby L, Failla O, Cola G, Mariani L, Boaretto E, Bacilieri R, This P, Wales N, Lordkipanidze D (November 2017). "Early Neolithic wine of Georgia in the South Caucasus". Proceedings of the National Academy of Sciences of the United States of America. 114 (48): E10309–E10318. doi:10.1073/pnas.1714728114. PMC5715782. PMID29133421.
^Rosso AM (2012). "Beer and wine in antiquity: beneficial remedy or punishment imposed by the Gods?". Acta Medico-Historica Adriatica. 10 (2): 237–62. PMID23560753.