This website does readability filtering of other pages. All styles, scripts, forms and ads are stripped. If you want your website excluded or have other feedback, use this form.

No Laughing Matter: The Unmaking of the Greenhouse Gas Dinitrogen Monoxide by Nitrous Oxide Reductase | SpringerLink

Skip to main content

This service is more advanced with JavaScript available, learn more at []



The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment pp 177-210 | Cite as

No Laughing Matter: The Unmaking of the Greenhouse Gas Dinitrogen Monoxide by Nitrous Oxide Reductase

  • Lisa K. Schneider
  • Anja Wüst
  • Anja Pomowski
  • Lin Zhang
  • Oliver Einsle
ChapterFirst Online: 03 March 2014 Part of the Metal Ions in Life Sciences book series (MILS, volume 14)


The gas nitrous oxide (N2O) is generated in a variety of abiotic, biotic, and anthropogenic processes and it has recently been under scrutiny for its role as a greenhouse gas. A single enzyme, nitrous oxide reductase, is known to reduce N2O to uncritical N2, in a two-electron reduction process that is catalyzed at two unusual metal centers containing copper. Nitrous oxide reductase is a bacterial metalloprotein from the metabolic pathway of denitrification, and it forms a 130 kDa homodimer in which the two metal sites CuA and CuZ from opposing monomers are brought into close contact to form the active site of the enzyme. CuA is a binuclear, valence-delocalized cluster that accepts and transfers a single electron. The CuA site of nitrous oxide reductase is highly similar to that of respiratory heme-copper oxidases, but in the denitrification enzyme the site additionally undergoes a conformational change on a ligand that is suggested to function as a gate for electron transfer from an external donor protein. CuZ, the tetranuclear active center of nitrous oxide reductase, is isolated under mild and anoxic conditions as a unique [4Cu:2S] cluster. It is easily desulfurylated to yield a [4Cu:S] state termed CuZ * that is functionally distinct. The CuZ form of the cluster is catalytically active, while CuZ * is inactive as isolated in the [3Cu1+:1Cu2+] state. However, only CuZ * can be reduced to an all-cuprous state by sodium dithionite, yielding a form that shows higher activities than CuZ. As the possibility of a similar reductive activation in the periplasm is unconfirmed, the mechanism and the actual functional state of the enzyme remain under debate. Using enzyme from anoxic preparations with CuZ in the [4Cu:2S] state, N2O was shown to bind between the CuA and CuZ sites, suggesting direct electron transfer from CuA to the substrate after its activation by CuZ.


copper enzymes global warming nitrogen cycle nitrous oxide X-ray crystallography  This is a preview of subscription content, log in to check access.



The authors thank Peter Kroneck, Walter Zumft, Jörg Simon, Sofia Pauleta, and Isabel Moura for stimulating discussions. This work was supported by Deutsche Forschungsgemeinschaft, Deutscher Akademischer Austauschdienst, the BIOSS Centre for Biological Signalling Studies, and the European Research Council.


  1. 1. P. M. H. Kroneck, in Biogeochemical Cycles of Elements, Vol. 43 of Metal Ions in Biological Systems, Eds A. Sigel, H. Sigel, R. K. O. Sigel, Taylor & Francis, Boca Raton, USA, 2005, pp. 1–7.Google Scholar
  2. 2. O. Einsle, P. M. H. Kroneck, Biol. Chem. 2004, 385, 875–883.PubMedCrossRefGoogle Scholar
  3. 3. D. E. Canfield, A. N. Glazer, P. G. Falkowski, Science 2010, 330, 192–196.PubMedCrossRefGoogle Scholar
  4. 4. O. Einsle, Methods Enzymol. 2011, 496, 399–422.PubMedCrossRefGoogle Scholar
  5. 5. B. Kartal, W. J. Maalcke, N. M. de Almeida, I. Cirpus, J. Gloerich, W. Geerts, H. J. M. O. den Camp, H. R. Harhangi, E. M. Janssen-Megens, K. J. Francoijs, H. G. Stunnenberg, J. T. Keltjens, M. S. M. Jetten, M. Strous, Nature 2011, 479, 127–132.PubMedCrossRefGoogle Scholar
  6. 6. R. Knowles, Microbiol. Rev. 1982, 46, 43–70.PubMedCentralPubMedGoogle Scholar
  7. 7. W. G. Zumft, Microbiol. Mol. Biol. Rev. 1997, 61, 533–616.PubMedCentralPubMedGoogle Scholar
  8. 8. D. C. Rees, F. A. Tezcan, C. A. Haynes, M. Y. Walton, S. Andrade, O. Einsle, J. B. Howard, Philos. Trans. R. Soc. A 2005, 363, 971–984.CrossRefGoogle Scholar
  9. 9. J. Priestley, Experiments and Observations on Different Kinds of Air, J. Johnson, London, 1774.Google Scholar
  10. 10. W. C. Trogler, Coord. Chem. Rev. 1999, 187, 303–327.CrossRefGoogle Scholar
  11. 11. W. G. Zumft, P. M. H. Kroneck, Adv. Microb. Physiol. 2007, 52, 107–225.PubMedCrossRefGoogle Scholar
  12. 12. M. Leuenberger, U. Siegenthaler, Nature 1992, 360, 449–451.CrossRefGoogle Scholar
  13. 13. W. C. Trogler, J. Chem. Educ. 1995, 72, 973–976.CrossRefGoogle Scholar
  14. 14. J. T. Houghton, Climate Change 1996: The Science of Climate Change, Cambridge University Press, Cambridge, 1996.Google Scholar
  15. 15. O. Badr, S. D. Probert, Appl. Energ. 1993, 44, 197–231.CrossRefGoogle Scholar
  16. 16. A. R. Ravishankara, J. S. Daniel, R. W. Portmann, Science 2009, 326, 123–125.PubMedCrossRefGoogle Scholar
  17. 17. P. O. Wennberg, R. C. Cohen, R. M. Stimpfle, J. P. Koplow, J. G. Anderson, R. J. Salawitch, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, C. R. Webster, R. D. May, D. W. Toohey, L. M. Avallone, M. H. Proffitt, M. Loewenstein, J. R. Podolske, K. R. Chan, S. C. Wofsy, Science 1994, 266, 398–404.PubMedCrossRefGoogle Scholar
  18. 18. European Commission, in “Climate action: Commission proposes ratification of second phase of Kyoto Protocol”, 2013.Google Scholar
  19. 19. S. Rakshit, C. J. Matocha, M. S. Coyne, Soil Sci. Soc. Am. J. 2008, 72, 1070–1077.CrossRefGoogle Scholar
  20. 20. V. A. Samarkin, M. T. Madigan, M. W. Bowles, K. L. Casciotti, J. C. Priscu, C. P. Mckay, S. B. Joye, Nat. Geosci. 2010, 3, 341–344.CrossRefGoogle Scholar
  21. 21. G. A. Kowalchuk, J. R. Stephen, Annu. Rev. Microbiol. 2001, 55, 485–529.PubMedCrossRefGoogle Scholar
  22. 22. R. A. Reimer, C. S. Slaten, M. Seapan, M. W. Lower, P. E. Tomlinson, Environ. Prog. 1994, 13, 134–137.CrossRefGoogle Scholar
  23. 23. J. Simon, O. Einsle, P. M. H. Kroneck, W. G. Zumft, FEBS Lett. 2004, 569, 7–12.PubMedCrossRefGoogle Scholar
  24. 24. H. Iwasaki, T. Saigo, T. Matsubara, Plant Cell Physiol 1980, 21, 1573–1584.PubMedCrossRefGoogle Scholar
  25. 25. T. Matsubara, W. G. Zumft, Arch. Microbiol. 1982, 132, 322–328.CrossRefGoogle Scholar
  26. 26. W. G. Zumft, T. Matsubara, FEBS Lett. 1982, 148, 107–112.CrossRefGoogle Scholar
  27. 27. K. Brown, K. Djinovic-Carugo, T. Haltia, I. Cabrito, M. Saraste, J. J. G. Moura, I. Moura, M. Tegoni, C. Cambillau, J. Biol. Chem. 2000, 275, 41133–41136.PubMedCrossRefGoogle Scholar
  28. 28. K. Brown, M. Tegoni, M. Prudêncio, A. S. Pereira, S. Besson, J. J. G. Moura, I. Moura, C. Cambillau, Nat. Struct. Biol. 2000, 7, 191–195.PubMedCrossRefGoogle Scholar
  29. 29. C. Sproer, E. Lang, P. Hobeck, J. Burghardt, E. Stackebrandt, B. J. Tindall, Int. J. Syst. Bacteriol. 1998, 48, 1445–1448.CrossRefGoogle Scholar
  30. 30. T. Haltia, K. Brown, M. Tegoni, C. Cambillau, M. Saraste, K. Mattila, K. Djinovic-Carugo, Biochem. J. 2003, 369, 77–88.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31. K. Paraskevopoulos, S. V. Antonyuk, R. G. Sawers, R. R. Eady, S. S. Hasnain, J. Mol. Biol. 2006, 362, 55–65.PubMedCrossRefGoogle Scholar
  32. 32. A. Pomowski, W. G. Zumft, P. M. H. Kroneck, O. Einsle, Nature 2011, 477, 234–237.PubMedCrossRefGoogle Scholar
  33. 33. P. Völkl, R. Huber, E. Drobner, R. Rachel, S. Burggraf, A. Trincone, K. O. Stetter, Appl. Environ. Microbiol. 1993, 59, 2918–2926.PubMedCentralPubMedGoogle Scholar
  34. 34. E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt, L. Tian, Chem. Rev. 2014, 114, 3659–3853.PubMedCrossRefGoogle Scholar
  35. 35. C. C. Page, C. C. Moser, X. X. Chen, P. L. Dutton, Nature 1999, 402, 47–52.PubMedCrossRefGoogle Scholar
  36. 36. S. Teraguchi, T. C. Hollocher, J. Biol. Chem. 1989, 264, 1972–1979.PubMedGoogle Scholar
  37. 37. S. Dell’Acqua, S. R. Pauleta, E. Monzani, A. S. Pereira, L. Casella, J. J. G. Moura, I. Moura, Biochemistry 2008, 47, 10852–10862.PubMedCrossRefGoogle Scholar
  38. 38. K. Mattila, T. Haltia, Proteins: Struct. Funct. Bioinform. 2005, 59, 708–722.CrossRefGoogle Scholar
  39. 39. I. V. Pearson, M. D. Page, R. J. M. van Spanning, S. J. Ferguson, J. Bacteriol. 2003, 185, 6308–6315.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40. J. Riester, W. G. Zumft, P. M. H. Kroneck, Eur. J. Biochem. 1989, 178, 751–762.PubMedCrossRefGoogle Scholar
  41. 41. W. G. Zumft, P. M. H. Kroneck, Adv. Inorg. Chem. 1996, 11, 193–221.Google Scholar
  42. 42. P. Wunsch, H. Körner, F. Neese, R. J. M. van Spanning, P. M. H. Kroneck, W. G. Zumft, FEBS Lett. 2005, 579, 4605–4609.PubMedCrossRefGoogle Scholar
  43. 43. C. L. Coyle, W. G. Zumft, P. M. H. Kroneck, H. Körner, W. Jakob, Eur. J. Biochem. 1985, 153, 459–467.PubMedCrossRefGoogle Scholar
  44. 44. A. Wüst, L. Schneider, A. Pomowski, W. G. Zumft, P. M. H. Kroneck, O. Einsle, Biol. Chem. 2012, 393, 1067–1077.PubMedCrossRefGoogle Scholar
  45. 45. J. M. Charnock, A. Dreusch, H. Körner, F. Neese, J. Nelson, A. Kannt, H. Michel, C. D. Garner, P. M. H. Kroneck, W. G. Zumft, Eur. J. Biochem. 2000, 267, 1368–1381.PubMedCrossRefGoogle Scholar
  46. 46. T. Rasmussen, B. C. Berks, J. Sanders-Loehr, D. M. Dooley, W. G. Zumft, A. J. Thomson, Biochemistry 2000, 39, 12753–12756.PubMedCrossRefGoogle Scholar
  47. 47. S. Dell’Acqua, S. R. Pauleta, J. J. Moura, I. Moura, Philos. Trans. R. Soc. B 2012, 367, 1204–1212.CrossRefGoogle Scholar
  48. 48. M. J. Gauthier, B. Lafay, R. Christen, L. Fernandez, M. Acquaviva, P. Bonin, J. C. Bertrand, Int. J. Syst. Bacteriol. 1992, 42, 568–576.PubMedCrossRefGoogle Scholar
  49. 49. M. Prudêncio, A. S. Pereira, P. Tavares, S. Besson, I. Cabrito, K. Brown, B. Samyn, B. Devreese, J. Van Beeumen, F. Rusnak, G. Fauque, J. J. G. Moura, M. Tegoni, C. Cambillau, I. Moura, Biochemistry 2000, 39, 3899–3907.PubMedCrossRefGoogle Scholar
  50. 50. M. Prudêncio, A. S. Pereira, P. Tavares, S. Besson, I. Moura, J. Inorg. Biochem. 1999, 74, 267–267.Google Scholar
  51. 51. A. Pomowski, W. G. Zumft, P. M. H. Kroneck, O. Einsle, Acta Crystallogr. Sect. F Cryst. Comm. 2010, 66, 1541–1543.Google Scholar
  52. 52. P. M. H. Kroneck, W. A. Antholine, J. Riester, W. G. Zumft, FEBS Lett. 1988, 242, 70–74.PubMedCrossRefGoogle Scholar
  53. 53. H. Beinert, Eur. J. Biochem. 1997, 245, 521–532.PubMedCrossRefGoogle Scholar
  54. 54. R. Malkin, B. G. Malmström, Adv. Enzymol. Relat. Subj. Biochem. 1970, 33, 177–244.Google Scholar
  55. 55. P. M. Li, B. G. Malmström, S. I. Chan, FEBS Lett. 1989, 248, 210–211.PubMedCrossRefGoogle Scholar
  56. 56. P. M. H. Kroneck, W. A. Antholine, J. Riester, W. G. Zumft, FEBS Lett. 1989, 248, 212–213.PubMedCrossRefGoogle Scholar
  57. 57. N. J. Blackburn, M. E. Barr, W. H. Woodruff, J. Vanderooost, S. de Vries, Biochemistry 1994, 33, 10401–10407.PubMedCrossRefGoogle Scholar
  58. 58. N. J. Blackburn, S. deVries, M. E. Barr, R. P. Houser, W. B. Tolman, D. Sanders, J. A. Fee, J. Am. Chem. Soc. 1997, 119, 6135–6143.Google Scholar
  59. 59. S. Iwata, C. Ostermeier, B. Ludwig, H. Michel, Nature 1995, 376, 660–669.PubMedCrossRefGoogle Scholar
  60. 60. T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, S. Yoshikawa, Science 1995, 269, 1069–1074.PubMedCrossRefGoogle Scholar
  61. 61. T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, S. Yoshikawa, Science 1996, 272, 1136–1144.PubMedCrossRefGoogle Scholar
  62. 62. M. Wilmanns, P. Lappalainen, M. Kelly, E. Sauer-Eriksson, M. Saraste, Proc. Natl. Acad. Sci. USA 1995, 92, 11955–11959.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63. B. L. Vallee, R. J. P. Williams, Proc. Natl. Acad. Sci. USA 1968, 59, 498–505.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64. R. P. Houser, V. G. Young, W. B. Tolman, J. Am. Chem. Soc. 1996, 118, 2101–2102.CrossRefGoogle Scholar
  65. 65. G. Henkel, A. Müller, S. Weissgräber, G. Buse, T. Soulimane, G. C. M. Steffens, H. F. Nolting, Angew. Chem. Int. Ed. 1995, 34, 1488–1492.CrossRefGoogle Scholar
  66. 66. F. Neese, W. G. Zumft, W. E. Antholine, P. M. H. Kroneck, J. Am. Chem. Soc. 1996, 118, 8692–8699.CrossRefGoogle Scholar
  67. 67. F. Neese, R. Kappl, J. Hüttermann, W. G. Zumft, P. M. H. Kroneck, J. Biol. Inorg. Chem. 1998, 3, 53–67.Google Scholar
  68. 68. B. Epel, C. S. Slutter, F. Neese, P. M. H. Kroneck, W. G. Zumft, I. Pecht, O. Farver, Y. Lu, D. Goldfarb, J. Am. Chem. Soc. 2002, 124, 8152–8162.PubMedCrossRefGoogle Scholar
  69. 69. P. Wittung, B. Kallebring, B. G. Malmström, FEBS Lett. 1994, 349, 286–288.PubMedCrossRefGoogle Scholar
  70. 70. M. Saraste, Q. Rev. Biophys. 1990, 23, 331–366.PubMedCrossRefGoogle Scholar
  71. 71. E. T. Adman, Adv. Protein Chem. 1991, 42, 145–197.PubMedCrossRefGoogle Scholar
  72. 72. C. R. Andrew, P. Lappalainen, M. Saraste, M. T. Hay, Y. Lu, C. Dennison, G. W. Canters, J. A. Fee, C. E. Slutter, N. Nakamura, J. Sanders-Loehr, J. Am. Chem. Soc. 1995, 117, 10759–10760.CrossRefGoogle Scholar
  73. 73. C. Dennison, E. Vijgenboom, S. de Vries, J. Vanderoost, G. W. Canters, FEBS Lett. 1995, 365, 92–94.PubMedCrossRefGoogle Scholar
  74. 74. J. A. Farrar, A. J. Thomson, M. R. Cheesman, D. M. Dooley, W. G. Zumft, FEBS Lett. 1991, 294, 11–15.PubMedCrossRefGoogle Scholar
  75. 75. P. Chen, S. I. Gorelsky, S. Ghosh, E. I. Solomon, Angew. Chem. Int. Edit. 2004, 43, 4132–4140.CrossRefGoogle Scholar
  76. 76. M. L. Alvarez, J. Y. Ai, W. G. Zumft, J. Sanders-Loehr, D. M. Dooley, J. Am. Chem. Soc. 2001, 123, 576–587.PubMedCrossRefGoogle Scholar
  77. 77. T. Rasmussen, B. C. Berks, J. N. Butt, A. J. Thomson, Biochem. J. 2002, 364, 807–815.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78. S. R. Pauleta, S. Dell’Acqua, I. Moura, Coord. Chem. Rev. 2013, 257, 332–349.CrossRefGoogle Scholar
  79. 79. S. W. Snyder, T. C. Hollocher, J. Biol. Chem. 1987, 262, 6515–6525.PubMedGoogle Scholar
  80. 80. S. Dell’Acqua, S. R. Pauleta, P. M. Paes de Sousa, E. Monzani, L. Casella, J. J. Moura, I. Moura, J. Biol. Inorg. Chem. 2010, 15, 967–976.PubMedCrossRefGoogle Scholar
  81. 81. E. M. Johnston, S. Dell’Acqua, S. Ramos, S. R. Pauleta, I. Moura, E. I. Solomon, J. Am. Chem. Soc. 2014, 136, 614–617.PubMedCrossRefGoogle Scholar
  82. 82. S. Ghosh, S. I. Gorelsky, P. Chen, I. Cabrito, J. J. G. Moura, I. Moura, E. I. Solomon, J. Am. Chem. Soc. 2003, 125, 15708–15709.PubMedCrossRefGoogle Scholar
  83. 83. S. I. Gorelsky, S. Ghosh, E. I. Solomon, J. Am. Chem. Soc. 2006, 128, 278–290.PubMedCrossRefGoogle Scholar
  84. 84. T. V. O’Halloran, R. A. Pufhal, G. Munson, D. Huffman, Biochemistry 1996, 35, 110–110.Google Scholar
  85. 85. A. Viebrock, W. G. Zumft, J. Bacteriol. 1988, 170, 4658–4668.PubMedCentralPubMedGoogle Scholar
  86. 86. T. Palmer, B. C. Berks, Nat. Rev. Microbiol. 2012, 10, 483–496.PubMedGoogle Scholar
  87. 87. R. Kranz, R. Lill, B. Goldman, G. Bonnard, S. Merchant, Mol. Microbiol. 1998, 29, 383–396.PubMedCrossRefGoogle Scholar
  88. 88. V. A. M. Gold, F. Duong, I. Collinson, Mol. Membr. Biol. 2007, 24, 387–394.PubMedCrossRefGoogle Scholar
  89. 89. U. Honisch, W. G. Zumft, J. Bacteriol. 2003, 185, 1895–1902.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90. P. Wunsch, W. G. Zumft, J. Bacteriol. 2005, 187, 1992–2001.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91. M. A. McGuirl, J. A. Bollinger, N. Cosper, R. A. Scott, D. M. Dooley, J. Biol. Inorg. Chem. 2001, 6, 189–195.PubMedCrossRefGoogle Scholar
  92. 92. L. M. Taubner, M. A. McGuirl, D. M. Dooley, V. Copie, Biochemistry 2006, 45, 12240–12252.PubMedCrossRefGoogle Scholar
  93. 93. J. Y. Lee, J. G. Yang, D. Zhitnitsky, O. Lewinson, D. C. Rees, Science 2014, 343, 1133–1136.PubMedCrossRefGoogle Scholar
  94. 94. V. Srinivasan, A. J. Pierik, R. Lill, Science 2014, 343, 1137–1140.PubMedCrossRefGoogle Scholar
  95. 95. F. Leroux, S. Dementin, B. Burlatt, L. Cournac, A. Volbeda, S. Champ, L. Martin, B. Guigliarelli, P. Bertrand, J. Fontecilla-Camps, M. Rousset, C. Leger, Proc. Natl. Acad. Sci. USA 2008, 105, 11188–11193.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Lisa K. Schneider
    • 1
  • Anja Wüst
    • 1
  • Anja Pomowski
    • 1
  • Lin Zhang
    • 1
  • Oliver Einsle
    • 1
    Email author
  1. 1.Institute for BiochemistryAlbert-Ludwigs-Universität FreiburgFreiburg im BreisgauGermany

Personalised recommendations

Cite chapter

Buy options