This website does readability filtering of other pages. All styles, scripts, forms and ads are stripped. If you want your website excluded or have other feedback, use this form.

DNA detective: a review of molecular approaches to wildlife forensics | SpringerLink


Forensic Science, Medicine, and Pathology

September 2010, Volume 6, Issue 3, pp 180–194 | Cite as

DNA detective: a review of molecular approaches to wildlife forensics

  • E. A. AlacsEmail author
  • A. Georges
  • N. N. FitzSimmons
  • J. Robertson
ReviewFirst Online: 16 December 2009 Accepted: 15 November 2009


Illegal trade of wildlife is growing internationally and is worth more than USD$20 billion per year. DNA technologies are well suited to detect and provide evidence for cases of illicit wildlife trade yet many of the methods have not been verified for forensic applications and the diverse range of methods employed can be confusing for forensic practitioners. In this review, we describe the various genetic techniques used to provide evidence for wildlife cases and thereby exhibit the diversity of forensic questions that can be addressed using currently available genetic technologies. We emphasise that the genetic technologies to provide evidence for wildlife cases are already available, but that the research underpinning their use in forensics is lacking. Finally we advocate and encourage greater collaboration of forensic scientists with conservation geneticists to develop research programs for phylogenetic, phylogeography and population genetics studies to jointly benefit conservation and management of traded species and to provide a scientific basis for the development of forensic methods for the regulation and policing of wildlife trade.


Wildlife crime Species identification Population assignment Sexing Individual identification Wildlife trade  This is a preview of subscription content, log in to check access



We are grateful to the Australian Federal Police and the University of Canberra for funding this project.


  1. 1. Interpol. Wildlife crime. In: Interpol. 2007. Accessed 28 Mar 2008.
  2. 2. Cook D, Roberts M, Lowther J. The international wildlife trade and organised crime: a review of the evidence and the role of the UK. Gdalming: WWF-UK; 2002.Google Scholar
  3. 3. Warchol GL. The transnational illegal wildlife trade. Crim Justice Stud. 2004;1:57–73.Google Scholar
  4. 4. Faiola A. Animal smugglers sucking life from Amazon. In: The Washington Post. Sunday 9 December 2001. Accessed 25 Mar 2008.
  5. 5. Alacs EA, Georges A. Wildlife across our borders: a review of the illegal trade in Australia. Aust J Forensic Sci. 2008;40:107–23.Google Scholar
  6. 6. Claridge G, Chea-Leth V, Chhoan IV. The effectiveness of law enforcement against forest and wildlife crime. A study of enforcement disincentives and other relevant factors in Southwestern Cambodia. Report prepared for East–West Management Institute, Conservation International and USAid. 2005. Accessed 21 Mar 2008.
  7. 7. Leader-Williams N, Milner-Gulland EJ. Policies for the enforcement of wildlife laws: the balance between detection and penalties in Luangwa Valley, Zambia. Conserv Biol. 1993;7:611–7.CrossRefGoogle Scholar
  8. 8. Li YM, Gao ZX, Li XH, Wang S, Niemela J. Illegal wildlife trade in the Himalayan region of China. Biodiv Conserv. 2000;9:901–18.CrossRefGoogle Scholar
  9. 9. Courchamp F, Angulo E, Rivalan P, Hall RJ, Signoret L, Bull L, et al. Rarity value and species extinction: the anthropogenic allee effect. Plos Biol. 2006;4:2405–10.CrossRefGoogle Scholar
  10. 10. Turtle Conservation Fund. A global action plan for conservation of tortoises and freshwater turtles. Strategy and funding prospectus 2002–2007. Conservation International and Chelonian Research Foundation. Washington DC;2002.Google Scholar
  11. 11. Van Dijk PP, Stuart BL, Rhodin AGJ. Asian turtle trade: proceedings of a workshop on conservation and trade of freshwater turtles and tortoises in Asia. In: Chelonian Research Monographs Chelonian Research Foundation, Lunenburg, MA;2000.Google Scholar
  12. 12. Davic RD. Linking keystone species and functional groups: a new operational definition of the keystone species concept—response. Conserv Ecol. 2003;7:r11.Google Scholar
  13. 13. Kotliar NB. Application of the new keystone-species concept to prairie dogs: how well does it work? Conserv Biol. 2000;14:1715–21.CrossRefGoogle Scholar
  14. 14. Mills LS, Soule ME, Doak DF. The keystone species in ecology and conservation. Bioscience. 1993;43:219–24.CrossRefGoogle Scholar
  15. 15. IUCN. 2004 IUCN red list of threatened species. A global species assessment. IUCN, Gland, Switzerland and Cambridge;2004.Google Scholar
  16. 16. Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Nat Acad Sci USA. 2006;103:3165–70.PubMedCrossRefGoogle Scholar
  17. 17. Pedersen AB, Jones KE, Nunn CL, Altizer S. Infectious diseases and extinction risk in wild mammals. Conserv Biol. 2007;21:1269–79.PubMedCrossRefGoogle Scholar
  18. 18. Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. Ecohealth. 2007;4:125–34.CrossRefGoogle Scholar
  19. 19. Smith KF, Sax DF, Lafferty KD. Evidence for the role of infectious disease in species extinction and endangerment. Conserv Biol. 2006;20:1349–57.PubMedCrossRefGoogle Scholar
  20. 20. Spinks PQ, Shaffer HB. Conservation phylogenetics of the Asian box turtles (Geoemydidae, Cuora): mitochondrial introgression, numts, and inferences from multiple nuclear loci. Conserv Genet. 2007;8:641–57.CrossRefGoogle Scholar
  21. 21. Keller RP, Lodge DM. Species invasions from commerce in live aquatic organisms: problems and possible solutions. Bioscience. 2007;57:428–36.CrossRefGoogle Scholar
  22. 22. Normile D. Invasive species—expanding trade with China creates ecological backlash. Science. 2004;306:968–9.PubMedCrossRefGoogle Scholar
  23. 23. Reed RN. An ecological risk assessment of non-native boas and pythons as potentially invasive species in the United States. Risk Anal. 2005;25:753–66.PubMedCrossRefGoogle Scholar
  24. 24. Weigle SM, Smith LD, Carlton JT, Pederson J. Assessing the risk of introducing exotic species via the live marine species trade. Conserv Biol. 2005;19:213–23.CrossRefGoogle Scholar
  25. 25. Wong K-L, Wang J, But PP-H, Shaw P-C. Application of cytochrome b DNA sequences for the authentication of endangered snake species. Forensic Sci Int. 2004;139:49–55.PubMedCrossRefGoogle Scholar
  26. 26. Hedmark E, Ellegren H. Microsatellite genotyping of DNA isolated from claws left on tanned carnivore hides. Int J of Legal Med. 2005;119:370–3.CrossRefGoogle Scholar
  27. 27. Chapman DD, Abercrombie DL, Douady CJ, Pikitch EK, Stanhope MJ, Shivji MS. A streamlined, bi-organelle, multiplex PCR approach to species identification: application to global conservation and trade monitoring of the great white shark, Carcharodon carcharias. Conserv Genet. 2003;4:415–25.CrossRefGoogle Scholar
  28. 28. Moore MK, Bemiss JA, Rice SM, Quattro JM, Woodley CM. Use of restriction fragment length polymorphisms to identify sea turtle eggs and cooked meats to species. Conserv Genet. 2003;4:95–103.CrossRefGoogle Scholar
  29. 29. Branicki W, Kupiec T, Pawlowski R. Validation of cytochrome b sequence analysis as a method of species identification. J Forensic Sci. 2003;48:83–7.PubMedGoogle Scholar
  30. 30. Prado M, Franco C, Fente C, Cepeda A, Vázquez B, Barros-Velázquez. Comparison of extraction methods for the recovery amplification and species-specific analysis of DNA from bone and bone meals. Electrophoresis. 2002;23:1005–12.PubMedCrossRefGoogle Scholar
  31. 31. Wasser SK, Mailand C, Booth R, Mutayoba B, Kisamo E, Clark B, et al. Using DNA to track the origin of the largest ivory seizure since the 1989 trade ban. Proc Nat Acad Sci USA. 2007;104:4228–33.PubMedCrossRefGoogle Scholar
  32. 32. Wasser SK, Shedlock AM, Comstock K, Ostrander EA, Mutayoba B, Stephens M. Assigning African elephant DNA to geographic region of origin: applications to the ivory trade. Proc Nat Acad Sci USA. 2004;101:14847–52.PubMedCrossRefGoogle Scholar
  33. 33. Hsieh HM, Huang LH, Tsai LC, Kuo YC, Meng HH, Linacre A, et al. Species identification of rhinoceros horns using the cytochrome b gene. For Sci Int. 2003;136:1–11.Google Scholar
  34. 34. Lo CF, Lin YR, Chang HC, Lin JH. Identification of turtle shell and its preparations by PCR-DNA sequencing method. J Food Drug Anal. 2006;14:153–8.Google Scholar
  35. 35. Rudnick JA, Katzner TE, Bragin EA, DeWoody JA. Species identification of birds through genetic analysis of naturally shed feathers. Mol Ecol Notes. 2007;7:752–62.CrossRefGoogle Scholar
  36. 36. Kumar R, Singh PJ, Nagpure NS, Kushwaha B, Srivastava SK, Lakra WS. A non-invasive technique for rapid extraction of DNA from fish scales. Indian J Exp Biol. 2007;45:992–7.PubMedGoogle Scholar
  37. 37. Randi E. Mitochondrial DNA. In: Baker AJ, editor. Molecular methods in ecology. Malden: Blackwell Science; 2000.Google Scholar
  38. 38. Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, et al. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Nat Acad Sci USA. 1989;86:6196–200.PubMedCrossRefGoogle Scholar
  39. 39. Mullis KB, Ferré F, Gibbs RA. The polymerase chain reaction. Birkhäuser: Boston; 1994.Google Scholar
  40. 40. Alacs E, Alpers D, de Tores P, Dillon M, Spencer PBS. Identifying the presence of quokkas (Setonix brachyurus) and other macropods using cytochrome b analyses from faeces. Wildlife Res. 2003;30:41–7.CrossRefGoogle Scholar
  41. 41. Dawnay N, Ogden R, McEwing R, Carvalho GR, Thorpe RS. Validation of the barcoding gene CO1 for use in forensic genetic species identification. For Sci Int. 2007;173:1–6.Google Scholar
  42. 42. Hsieh HM, Chiang HL, Tsai LC, Lai SY, Huang NE, Linacre A, et al. Cytochrome b gene for species identification of the conservation animals. For Sci Int. 2001;122:7–18.Google Scholar
  43. 43. Verma SK, Singh L. Novel universal primers establish identity of an enormous number of animal species for forensic application. Mol Ecol Notes. 2003;3:28–31.CrossRefGoogle Scholar
  44. 44. Yau FCF, Wong KL, Shaw PC, But PPH, Wang J. Authentication of snakes used in Chinese medicine by sequence characterized amplified region (SCAR). Biodiv Conserv. 2002;11:1653–62.CrossRefGoogle Scholar
  45. 45. Malik S, Wilson PJ, Smith RJ, Lavigne DM, White BN. Pinniped penises in trade: a molecular-genetic investigation. Conserv Biol. 1997;11:1365–74.CrossRefGoogle Scholar
  46. 46. Lee JC, Tsai L-C, Huang M-T, Jhuang J-A, Yao C-T, Chin S-C, et al. A novel strategy for avian species identification by cytochrome b gene. Electrophoresis. 2008;29:2413–8.PubMedCrossRefGoogle Scholar
  47. 47. Wan QH, Fang SG. Application of species-specific polymerase chain reaction in the forensic identification of tiger species. For Sci Int. 2003;131:75–8.Google Scholar
  48. 48. Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science. 1998;281:363.PubMedCrossRefGoogle Scholar
  49. 49. Karlsson AO, Holmlund G. Identification of mammal species using species-specific DNA pyrosequencing. Forensic Sci Int. 2007;173:16–20.PubMedCrossRefGoogle Scholar
  50. 50. Ballard JWO, Whitlock MC. The incomplete natural history of mitochondria. Mol Ecol. 2004;13:729–44.PubMedCrossRefGoogle Scholar
  51. 51. Durand JD, Collet A, Chow S, Guinand B, Borsa P. Nuclear and mitochondrial DNA markers indicate unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna (Thunnus obesus) populations, and their admixture off southern Africa. Mar Biol. 2005;147:313–22.CrossRefGoogle Scholar
  52. 52. Breton S, Beaupre HD, Stewart DT, Hoeh WR, Blier PU. The unusual system of doubly uniparental inheritance of mtDNA: isn’t one enough? Trends Genet. 2007;23:465–74.PubMedCrossRefGoogle Scholar
  53. 53. Kvist L, Martens J, Nazarenko AA, Orell M. Paternal leakage of mitochondrial DNA in the great tit (Parus major). Mol Biol Evol. 2003;20:243–7.PubMedCrossRefGoogle Scholar
  54. 54. Rokas A, Ladoukakis, Zouros E. Animal mitochondrial DNA recombination revisited. Trends Ecol Evol. 2003;18:411–7.CrossRefGoogle Scholar
  55. 55. Sherengul W, Kondo R, Matsuura ET. Analysis of paternal transmission of mitochondrial DNA in Drosophila. Genes Genetic Syst. 2006;81:399–404.CrossRefGoogle Scholar
  56. 56. Ujvari B, Dowton M, Madsen T. Mitochondrial DNA recombination in a free-ranging Australian lizard. Biol Lett. 2007;3:189–92.PubMedCrossRefGoogle Scholar
  57. 57. Arctander P. Comparison of a mitochondrial gene and a corresponding nuclear pseudogene. Proc R Soc London Ser B. 1995;262:13–9.CrossRefGoogle Scholar
  58. 58. Parr RL, Maki J, Reguly B, Dakubo GD, Aguirre A, Wittock R, et al. The pseudo-mitochondrial genome influences mistakes in heteroplasmy interpretation. BMC Genomics. 2006;7:185.PubMedCrossRefGoogle Scholar
  59. 59. Thalmann O, Hebler J, Poinar HN, Paabo S, Vigilant L. Unreliable mtDNA data due to nuclear insertions: a cautionary tale from analysis of humans and other great apes. Mol Ecol. 2004;13:321–35.PubMedCrossRefGoogle Scholar
  60. 60. Behura SK. Analysis of nuclear copies of mitochondrial sequences in honeybee (Apis mellifera) genome. Mol Biol Evol. 2007;24:1492–505.PubMedCrossRefGoogle Scholar
  61. 61. Podnar M, Haring E, Pinsker W, Mayer W. Unusual origin of a nuclear pseudogene in the Italian wall lizard: intergenomic and interspecific transfer of a large section of the mitochondrial genome in the genus Podarcis (Lacertidae). J Mol Evol. 2007;64:308–20.PubMedCrossRefGoogle Scholar
  62. 62. Xu JP, Zhang QQ, Xu XF, Wang ZG, Qi J. Intragenomic variability and pseudogenes of ribosomal DNA in stone flounder Kareiius bicoloratus. Mol Phylogenet Evol. 2009;52:157–66.PubMedCrossRefGoogle Scholar
  63. 63. Saville BJ, Kohli Y, Anderson JB. mtDNA recombination in a natural population. Proc Nat Acad Sci USA. 1998;95:1331–5.PubMedCrossRefGoogle Scholar
  64. 64. Brower AVZ, DeSalle R, Vogler A. Gene trees, species trees, and systematics: a cladistic perspective. Ann Rev Ecol Syst. 1996;27:423–50.CrossRefGoogle Scholar
  65. 65. Maddison WP. Gene trees in species trees. Syst Biol. 1997;46:523–36.Google Scholar
  66. 66. Page RDM. Extracting species trees from complex gene trees: reconciled trees and vertebrate phylogeny. Mol Phylogenet Evol. 2000;14:89–106.PubMedCrossRefGoogle Scholar
  67. 67. Sites JW, Davis SK, Guerra T, Iverson JB, Snell HL. Character congruence and phylogenetic signal in molecular and morphological data sets: a case study in the living iguanas (Squamata, Iguanidae). Mol Biol Evol. 1996;13:1087–105.PubMedGoogle Scholar
  68. 68. An J, Lee MY, Min MS, Lee MH, Lee H. A molecular genetic approach for species identification of mammals and sex determination of birds in a forensic case of poaching from South Korea. For Sci Int. 2007;167:59–61.Google Scholar
  69. 69. Cassidy BG, Gonzales RA. DNA testing in animal forensics. J Wildl Manage. 2005;69:1454–62.CrossRefGoogle Scholar
  70. 70. Ebach MC, Holdrege C. DNA barcoding is no substitute for taxonomy. Nature. 2005;434:697.PubMedCrossRefGoogle Scholar
  71. 71. Fernandes CA, Ginja C, Pereira I, Tenreiro R, Bruford MW, Santos-Reis M. Species-specific mitochondrial DNA markers for identification of non-invasive samples from sympatric carnivores in the Iberian Peninsula. Conserv Genet. 2008;9:681–90.CrossRefGoogle Scholar
  72. 72. Upholt WB. Estimation of DNA-sequence divergence from comparison of restriction endonuclease digests. Nucleic Acids Res. 1977;4:1257–65.PubMedCrossRefGoogle Scholar
  73. 73. Bravi CM, Liron JP, Rippoli MV, Peral-Gracia P, Giovambattista G. A simple method for domestic animal identification in Argentina using PCR-RFLP analysis of cytochrome b gene. Legal Med. 2004;6:246–51.PubMedCrossRefGoogle Scholar
  74. 74. Vandamme A. Basic concepts of molecular evolution. In: Salemi M, Vandamme A, editors. The phylogenetic handbook. A practical approach to DNA and protein phylogeny. New York: Cambridge University Press; 2003.Google Scholar
  75. 75. Rosenberg NA. The probability of topological concordance of gene trees and species trees. Theor Pop Biol. 2002;61:225–47.CrossRefGoogle Scholar
  76. 76. Sanderson MJ, Shaffer HB. Troubleshooting molecular phylogenetic analyses. Ann Rev Ecol Syst. 2002;33:49–72.CrossRefGoogle Scholar
  77. 77. Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, et al. Cryptic species as a window on diversity and conservation. Trends Ecol Evol. 2007;22:148–55.PubMedCrossRefGoogle Scholar
  78. 78. Arnold ML. Natural hybridization as an evolutionary process. Ann Rev Ecol Syst. 1992;23:237–61.CrossRefGoogle Scholar
  79. 79. Dowling TE. Secor CL the role of hybridization and introgression in the diversification of animals. Ann Rev Ecol Syst. 1997;28:593–619.CrossRefGoogle Scholar
  80. 80. Crochet PA, Chen JJZ, Pons JM, Lebreton J-D, Hebert PDN, Bonhomme F. Genetic differentiation at nuclear and mitochondrial loci among large white-headed gulls: sex-biased interspecific gene flow? Evolution. 2003;57:2865–78.PubMedGoogle Scholar
  81. 81. Wang RX, Zhao YL. Differential barrier strength and allele frequencies in hybrid zones maintained by sex-biased hybrid incompatibilities. Heredity. 2008;100:326–36.PubMedCrossRefGoogle Scholar
  82. 82. Whitworth TL, Dawson RD, Magalon H, Baudry E. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proc R Soc London Ser B. 2007;274:1731–9.CrossRefGoogle Scholar
  83. 83. Saetre GP, Borge T, Lindell J, Moum T, Primmer CR, Sheldon BC, et al. Speciation, introgressive hybridization and nonlinear rate of molecular evolution in flycatchers. Mol Ecol. 2001;10:737–49.PubMedCrossRefGoogle Scholar
  84. 84. Tegelstrom H, Gelter HP. Haldane rule and sex biased gene flow between two hybridizing flycatcher species (Ficedula albicollis and F. hypoleuca, Aves, Muscicapidae). Evolution. 1990;44:2012–21.CrossRefGoogle Scholar
  85. 85. Tosi AJ, Morales JC, Melnick DJ. Paternal, maternal, and biparental molecular markers provide unique windows onto the evolutionary history of macaque monkeys. Evolution. 2003;57:1419–35.PubMedGoogle Scholar
  86. 86. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M. AFLP—a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23:4407–14.PubMedCrossRefGoogle Scholar
  87. 87. Alghanim HJ, Almirall JR. Development of microsatellite markers in Cannabis sativa for DNA typing and genetic relatedness analyses. Anal Bioanal Chem. 2003;376:1225–33.PubMedCrossRefGoogle Scholar
  88. 88. Coyle HM, Palmbach T, Juliano N, Ladd C, Lee HC. An overview of DNA methods for the identification and individualization of marijuana. Croat Med J. 2003;44:315–21.Google Scholar
  89. 89. Datwyler SL, Weiblen GD. Genetic variation in hemp and marijuana (Cannabis sativa L.) according to amplified fragment length polymorphisms. J For Sci. 2006;51:371–5.Google Scholar
  90. 90. Hakki EE, Uz E, Sag A, Atasoy S, Akkaya MS. DNA fingerprinting of Cannabis sativa L. accessions using RAPD and AFLP markers. For Sci Int. 2003;136:31.Google Scholar
  91. 91. Coyle HM, Ladd C, Palmbach T, Lee HC. The green revolution: botanical contributions to forensics and drug enforcement. Croat Med J. 2001;42:340–5.Google Scholar
  92. 92. Lee JCI, Cole M, Linacre A. Identification of hallucinogenic fungi from the genera Psilocybe and Panaeolus by amplified fragment length polymorphism. Electrophoresis. 2000;21:1484–7.PubMedCrossRefGoogle Scholar
  93. 93. Linacre A, Cole M, Lee JCI. Identifying the presence of ‘magic mushrooms’ by DNA profiling. Sci Justice. 2002;42:50–4.PubMedCrossRefGoogle Scholar
  94. 94. Haig SM, Mullins TD, Forsman ED, Trail PW, Wennerberg L. Genetic identification of spotted owls, barred owls, and their hybrids: legal implications of hybrid identity. Conserv Biol. 2004;18:1347–57.CrossRefGoogle Scholar
  95. 95. Congiu L, Dupanloup I, Patanello T, Fontana F, Rossi R, Arlati G, et al. Identification of interspecific hybrids by amplified fragment length polymorphism: the case of sturgeon. Mol Ecol. 2001;10:2355–9.PubMedCrossRefGoogle Scholar
  96. 96. Nijman IJ, Otsen M, Verkaar ELC, de Ruijter C, Hanekamp E, Ochieng JW, et al. Hybridization of banteng (Bos javanicus) and zebu (Bos indicus) revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites. Heredity. 2003;90:10–6.PubMedCrossRefGoogle Scholar
  97. 97. Bensch S, Akesson M. Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol. 2005;14:2899–914.PubMedCrossRefGoogle Scholar
  98. 98. Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P. How to track and assess genotyping errors in population genetics studies. Mol Ecol. 2004;13:3261–73.PubMedCrossRefGoogle Scholar
  99. 99. Hong Y, Chuah A. A format for databasing and comparison of AFLP fingerprint profiles. BMC Bioinf. 2003;4:7.CrossRefGoogle Scholar
  100. 100. Clarke SC, Magnussen JE, Abercrombie DL, McAllister MK, Shivji MS. Identification of shark species composition and proportion in the Hong Kong shark fin market based on molecular genetics and trade records. Conserv Biol. 2006;20:201–11.PubMedCrossRefGoogle Scholar
  101. 101. Magnussen JE, Pikitch EK, Clarke SC, Nicholson C, Hoelzel AR, Shivji MS. Genetic tracking of basking shark products in international trade. Animal Conserv. 2007;10:199–207.CrossRefGoogle Scholar
  102. 102. Pank M, Stanhope M, Natanson L, Kohler N, Shivji M. Rapid and simultaneous identification of body parts from the morphologically similar sharks Carcharhinus obscurus and Carcharhinus plumbeus (Carcharhinidae) using multiplex PCR. Marine Biotechnol. 2001;3:231–40.CrossRefGoogle Scholar
  103. 103. Shivji MS, Chapman DD, Pikitch EK, Raymond PW. Genetic profiling reveals illegal international trade in fins of the great white shark, Carcharodon carcharias. Conserv Genet. 2005;6:1035–9.CrossRefGoogle Scholar
  104. 104. Negi MS, Devic M, Delseny M, Lakshmikumaran M. Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection. Theor Appl Genet. 2000;101:146–52.CrossRefGoogle Scholar
  105. 105. Perez T, Albornoz J, Dominguez A. An evaluation of RAPD fragment reproducibility and nature. Mol Ecol. 1998;7:1347–57.PubMedCrossRefGoogle Scholar
  106. 106. Wu XB, Liu H, Jiang ZG. Identification primers for sika deer (Cervus nippon) from a sequence-characterised amplified region (SCAR). NZ J Zool. 2006;33:65–71.Google Scholar
  107. 107. Zhang JB, Cai ZP. Differentiation of the rainbow trout (Oncorhynchus mykiss) from Atlantic salmon (Salmon salar) by the AFLP-derived SCAR. Eur Food Res Tech. 2006;223:413–7.CrossRefGoogle Scholar
  108. 108. He L, Wang SB, Miao XX, Wu H, Huang YP. Identification of necrophagous fly species using ISSR and SCAR markers. For Sci Int. 2007;168:148–53.Google Scholar
  109. 109. Avise JC, Arnold J, Martin Ball R, Bermingham E, Lamb T, Neigel JE, et al. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Ann Rev Ecol Syst. 1987;18:489–522.Google Scholar
  110. 110. Sanders JG, Cribbs JE, Fienberg HG, Hulburd GC, Katz LS, Palumbi SR. The tip of the tail: molecular identification of seahorses for sale in apothecary shops and curio stores in California. Conserv Genet. 2008;9:65–71.CrossRefGoogle Scholar
  111. 111. Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics. 1999;153:1989–2000.PubMedGoogle Scholar
  112. 112. DeYoung RW, Demarais S, Honeycutt RL, Gonzales RA, Gee KL, Anderson JD. Evaluation of a DNA microsatellite panel useful for genetic exclusion studies in white-tailed deer. Wildlife Soc Bull. 2003;31:220–32.Google Scholar
  113. 113. Gomez-Diaz E, Gonzalez-Solis J. Geographic assignment of seabirds to their origin: combining morphologic, genetic, and biogeochemical analyses. Ecol Appl. 2007;17:1484–98.PubMedCrossRefGoogle Scholar
  114. 114. Manel S, Gaggiotti OE, Waples RS. Assignment methods: matching biological questions techniques with appropriate. Trends Ecol Evol. 2005;20:136–42.PubMedCrossRefGoogle Scholar
  115. 115. Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004;5:435–45.PubMedCrossRefGoogle Scholar
  116. 116. Campbell D, Duchesne P, Bernatchez L. AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Mol Ecol. 2003;12:1979–91.PubMedCrossRefGoogle Scholar
  117. 117. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20.PubMedCrossRefGoogle Scholar
  118. 118. Manel S, Berthoud F, Bellemain E, Gaudeul M, Luikart G, Swenson JE, et al. Intrabiodiv consortium. A new individual-based spatial approach for identifying genetic discontinuities in natural populations. Mol Ecol. 2007;16:2031–43.PubMedCrossRefGoogle Scholar
  119. 119. Maudetr C, Miller C, Bassano B, Breitenmoser-Würsten C, Gauthier D, Obexer-Ruff G, et al. Microsatellite DNA and recent statistical methods in wildlife conservation management: applications in Alpine ibex Capra ibex (ibex). Mol Ecol. 2002;11:421–36.PubMedCrossRefGoogle Scholar
  120. 120. Paetkau D, Slade R, Burden M, Estoup A. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol. 2004;13:55–65.PubMedCrossRefGoogle Scholar
  121. 121. Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A. GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered. 2004;95:536–9.PubMedCrossRefGoogle Scholar
  122. 122. Waples RS, Gaggiotti O. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol. 2006;15:1419–39.PubMedCrossRefGoogle Scholar
  123. 123. Mank JE, Avise JC. Individual organisms as units of analysis: Bayesian-clustering alternatives in population genetics. Genetical Res. 2004;84:135–43.CrossRefGoogle Scholar
  124. 124. Guillot G, Mortier F, Estoup A. GENELAND: a computer package for landscape genetics. Mol Ecol Notes. 2005;5:712–5.CrossRefGoogle Scholar
  125. 125. Velo-Anton G, Godinho R, Ayres C, Ferrand N, Rivera AC. Assignment tests applied to relocate individuals of unknown origin in a threatened species, the European pond turtle (Emys orbicularis). Amphibia-Reptilia. 2007;28:475–84.CrossRefGoogle Scholar
  126. 126. Frantz AC, Pourtois JT, Heuertz M, Schley L, Flamand MC, Krier A, et al. Genetic structure and assignment tests demonstrate illegal translocation of red deer (Cervus elaphus) into a continuous population. Mol Ecol. 2006;15:3191–203.PubMedCrossRefGoogle Scholar
  127. 127. Renshaw MA, Saillant E, Broughton RE, Gold JR. Application of hypervariable genetic markers to forensic identification of ‘wild’ from hatchery-raised red drum, Sciaenops ocellatus. For Sci Int. 2006;156:9–15.Google Scholar
  128. 128. Baker CS, Cooke JG, Lavery S, Dalebout ML, Yu M, Funashi N, et al. Estimating the number of whales entering trade using DNA profiling and capture-recapture analysis of market products. Mol Ecol. 2007;16:2617–26.PubMedCrossRefGoogle Scholar
  129. 129. Palsboll PJ, Berube M, Skaug HJ, Raymakers C. DNA registers of legally obtained wildlife and derived products as means to identify illegal takes. Conserv Biol. 2006;20:1284–93.PubMedCrossRefGoogle Scholar
  130. 130. Gupta SK, Thangaraj K, Singh L. A simple and inexpensive molecular method for sexing and identification of the forensic samples of elephant origin. J For Sci. 2006;51:805–7.Google Scholar
  131. 131. Butler JM. Forensic DNA typing. Amsterdam: Elsevier; 2005.Google Scholar
  132. 132. Scientific Working group on DNA Analysis Methods. Forensic Science Communications.;2004. Accessed 25 Mar 2008.
  133. 133. Howard C, Gilmore S, Robertson J, Peakall R. Application of new DNA markers for forensic examination of Cannabis sativa Seizures—developmental validation of protocols and a genetic database, NDLERF monograph series, no. 29. Hobart: National Drug Law Enforcement Research Fund; 2008.Google Scholar
  134. 134. Girard JE. Criminalistic, forensic science and crime. Boston: Jones and Bartlett Publishers; 2008.Google Scholar
  135. 135. Amorim A. Pereira L Pros and cons in the use of SNPs in forensic kinship investigation: a comparative analysis with STRs. For Sci Int. 2005;150:17–21.Google Scholar
  136. 136. Budowle B. SNP typing strategies. For Sci Int. 2004;146:S139–42.Google Scholar
  137. 137. Chakraborty R, Stivers DN, Su B, Zhong YX, Budowle B. The utility of short tandem repeat loci beyond human identification: implications for development of new DNA typing systems. Electrophoresis. 1999;20:1682–96.PubMedCrossRefGoogle Scholar
  138. 138. Sarkar N, Kashyap VK. SNP markers in forensic testing—a preliminary study. For Sci Int. 2003;136:52–3.Google Scholar
  139. 139. Divne AM, Allen M. A DNA microarray system for forensic SNP analysis. For Sci Int. 2005;154:111–21.Google Scholar
  140. 140. Schwenke PL, Rhydderch JG, Ford MJ, Marshall AR, Park LK. Forensic identification of endangered Chinook Salmon (Oncorhynchus tshawytscha) using a multilocus SNP assay. Conserv Genet. 2006;7:983–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • E. A. Alacs
    • 1
    Email author
  • A. Georges
    • 1
  • N. N. FitzSimmons
    • 2
  • J. Robertson
    • 3
  1. 1.Institute for Applied Ecology and National Centre for Forensic StudiesUniversity of CanberraCanberraAustralia
  2. 2.Institute for Applied EcologyUniversity of CanberraCanberraAustralia
  3. 3.Australian Federal PoliceCanberraAustralia

Personalised recommendations

Cite article

Buy options


We use cookies to improve your experience with our site. More information