This website does readability filtering of other pages. All styles, scripts, forms and ads are stripped. If you want your website excluded or have other feedback, use this form.

Phylogeny of rheusus monkeys ( Macaca mulatta) as revealed by mitochondrial DNA restriction enzyme analysis | SpringerLink


International Journal of Primatology

August 1993, Volume 14, Issue 4, pp 587–605 | Cite as

Phylogeny of rheusus monkeys (Macaca mulatta) as revealed by mitochondrial DNA restriction enzyme analysis

  • Ya-ping Zhang
  • Li-ming Shi
ArticleReceived: 29 November 1991 Accepted: 11 February 1992


Mitochondrial DNA, purified from 36 samples of 23 local populations which are widely distributed in Vietnam, Burma, and 10 provinces of China, has been analyzed to model the phylogeny of rhesus monkeys. The 20 local populations of China may represent nearly all major populations in China. Using 20 restriction endonucleases of 6-bp recognition, we observed a total of 50–61 sites in the various samples. By combining the cleavage patterns for each enzyme, the 36 samples were classified into 23 restriction types, each of which was found exclusively in the respective population from which samples were obtained. By combining the earlier study of Indian rheusus monkeys, phylogenetic trees, which have been constructed on the basis of genetic distance, indicate that rhesus monkeys in China, Vietnam, India, and Burma can be divided into seven groups. Integrating morphological and geographical data, we suggest that rhesus monkeys in China, Vietnam, and Burma may be classified into six subspecies—M. m. mulatta, M. m. brevicaudus, M. m. lasiotis, M. m. littoralis, M. m. vestita, and M. m. tcheliensis-and rhesus monkeys in India may be another valid subspecies.M. m. tcheliensis is the most endangered subspecies in China. Divergence among subspecies may have begun 0.9–1.6 Ma. The radiation of rhesus monkeys in China may have spread from the southwest toward the east. The taxonomic status of the Hainan monkey and the Taiwan monkey require further investigation.

Key Words

Macaca mulatta mitochondrial DNA restriction enzyme analysis phylogeny  This is a preview of subscription content, log in to check access.


Unable to display preview. Download preview PDF.


  1. Allen, G. M. (1938).The Mammals of China and Mongolia, Part I, American Museum of Natural History, New York.Google Scholar
  2. Annenkov, H. A., Mirvis, A. B., and Kotrikadze, H. G. (1972). Geographical transferring polymorphism inMacaca mulatta.Primates 13: 235–242.CrossRefGoogle Scholar
  3. Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., and Saunders, N. C. (1987). Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics.Annu. Rev. Ecol. Syst. 18: 489–522.Google Scholar
  4. Brown, W. M. (1980). Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis.Proc. Natl. Acad. Sci. USA 77: 3605–3609.PubMedGoogle Scholar
  5. Brown, W. M. (1983). Evolution of animal mitochondrial DNA. In Nei, M., and Koehn, R. K. (eds.),Evolution of Genes and Proteins. Sinauer, Sunderland, MA, pp. 62–88.Google Scholar
  6. Brown, W. M., George, M., Jr., and Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA.Proc. Natl. Acad. Sci. USA 76: 1967–1971.PubMedGoogle Scholar
  7. Delson, E. (1980). Fossil Macaques, phyletic relationships and a scenario development. In Lindburg, D. G. (ed.),The Macaques: Studies in Ecology, Behaviour and Evolution, Van Nostrand Reinhold, New York, pp. 10–30.Google Scholar
  8. Easteal, S. (1991). The relative rate of DNA evolution in primates.Mol. Biol. Evol.8: 115–127.PubMedGoogle Scholar
  9. Ellerman, J. T., and Morrison-Scott, T. C. S. (1951).Checklist of Palaearctic and Indian Mammals, 1758–1945. British Museum of Natural History, London.Google Scholar
  10. Elliott, D. G. (1912).A Review of the Primates, Vol. 2. American Museum of Natural History. New York.Google Scholar
  11. Fa, J. (1989). The genusMacaca: A review of taxonomy and evolution.Mammal Rev. 19: 45–81.Google Scholar
  12. Ferris, S. D., Sage, R. D., Prager, E. M., Ritte, U., and Wilson, A. C. (1983). Mitochondrial DNA evolution in mice.Genetics 105: 681–721.PubMedGoogle Scholar
  13. Fooden, J. (1980). Classification and distribution of living macaques (Macaca Lecepede). In Lindburg, D. G. (ed.),The Macaques: Studies in Ecology, Behaviour and Evolution, Van Nostrand Reinhold, New York, pp. 10–30.Google Scholar
  14. Fooden, J., Mahabal, A., and Saha, S. S. (1981). Redefinition of rheusus macaque—bonnet macaque boundary in Peninsular India (Primates:Macaca mulatta, M. radiata).J. Bomb. Nat. Hist. Soc. 788: 463–474.Google Scholar
  15. Gu, Y. M. (1980). A Pliocene macaque's tooth from Zhongxiang, Hubei.Vertebr. Palasiat. 18: 324–326.Google Scholar
  16. Harihara, S., Saitou, N., Hirai, M., Aoto, N., Terao, K., Cho, F., Honjo, S., and Omoto, K. (1988). Differentiation of mitochondrial DNA types inMacaca fascicularis.Primates 29: 117–127.Google Scholar
  17. Harrison, R. G. (1989). Animal mitochondrial DNA as a genetic marker in population and evolutionary biology.Trends Ecol. Evol. 4: 6–11.CrossRefGoogle Scholar
  18. Hayasaka, K., Horai, S., Gojobori, T., Shotake, T., Nozawa, K., and Matsunaga, E. (1986). Mitochondrial DNA polymorphism in Japanese monkeys,Macaca fuscata.Jpn. J. Genet. 61: 345–359.Google Scholar
  19. Hayasaka, K., Horai, S., Gojobori, T., Shotake, T., Nozawa, K., and Matsunaga, E. (1988). Phylogenetic relationships among Japanese, rhesus, Formosan, and crab-eating monkeys, inferred from restriction enzyme analysis of mitochondrial DNAs.Mol. Biol. Evol. 5: 270–281.PubMedGoogle Scholar
  20. Hill, W. C. O. (1974).Primates: Comparative Anatomy and Taxonomy, Vol. VII. Cynopithecinae (Cercocebus, Macaca, Cynopithecus), Edinburgh University Press, Edinburgh.Google Scholar
  21. Huang, J. S. (1984). Changes of sea-level since the Late Pleistocene in China. In Whyte, P. (ed.),The Evolution of the East Asian Environment, Vol. 1, Centre of Asian Studies, Hong Kong.Google Scholar
  22. Jablonski, N. G., and Pan, Y. R. (1988). The evolution and palaeobiogeography of monkeys in China. In Whyte, P. (ed.),The Palaeoenvironment of East Asia from the Mid-Tertiary, Vol. II. Oceanography, Palaeozoology and Palaeoanthropology, University of Hong Kong, Hong Kong.Google Scholar
  23. Jiang, X. L., Wang, Y. X., and Ma, S. L. (1991). Taxonomic revision and distribution of subspecies of rhesus monkey (Macaca mulatta) in China.Zool. Res. 12: 241–247.Google Scholar
  24. Lansman, R. A., Shade, R. O., Shapira, J. F., and Avise, J. C. (1981). The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. III. Techniques and potential applications.J. Mol. Evol. 17: 214–226.CrossRefPubMedGoogle Scholar
  25. Liu, D. S., and Ding, M. L. (1984). The characteristics and evolution of the palaeoenvironment of China since the Late Tertiary. In Whyte, P. (ed.),The Evolution of the East Asian Environment, Vol. I, Centre of Asian Studies, Hong Kong.Google Scholar
  26. Melnick, D. J., and Kidd, K. K. (1985). Genetic and evolutionary relationships among Asian macques.Int. J. Primatol. 6: 123–160.Google Scholar
  27. Napier, J. R., and Napier, P. H. (1967).Handbook of Living Primates, Academic Press, London.Google Scholar
  28. Nei, M., and Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases.Proc. Nat. Acad. Sci. USA 76: 5269–5273.PubMedGoogle Scholar
  29. Nozawa, K., Shotake, T., Ohkura, Y. and Tanabe, Y. (1977). Genetic variations within and between species of Asian macaques.Jpn. J. Genet. 52: 13–30.Google Scholar
  30. Pan, Y. R., and Jablonski, N. G. (1987). The age and geographical distribution of fossil cercopithecids in China.Hum. Evol. 2: 59–69.Google Scholar
  31. Pocock, R. I. (1939).Mammalia. I. Primates and Carnivora in the Fauna of British India, Including Ceylon and Burma, Taylor and Francis, London.Google Scholar
  32. Qu, G. Q. (1979). Pliocene mammals in Lufeng, Yunnan Province.Vertebr. Palasiat. 17: 14–22.Google Scholar
  33. Quan, G. Q., Wang, S., and Zhang, R. Z. (1981). The taxonomy and distribution of primates in China.Wild Anim. 3: 7–14.Google Scholar
  34. Saitou, N., and Nei, M. (1987). The neighbour-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4: 406–425.PubMedGoogle Scholar
  35. Sneath, P. H. A., and Sokal, R. R. (1973).Numerical Taxonomy: The Principles and Practice of Numerical Classification, W. H. Freeman, San Francisco.Google Scholar
  36. Spuhler, J. N. (1988). Evolution of mitochondrial DNA in monkeys, apes, and humans.Yearbook Phys. Anthropol. 31: 15–48.CrossRefGoogle Scholar
  37. Wen, H. Z., He, Y., and Shiu, Z. (1981). Rhesus monkeys in historical period of North China.Henan Normal Univ. 1: 37–44.Google Scholar
  38. Wilson, A. C., Cann, R. L., Carr, S. M., George, M., Jr., Gyllensten, U. B., Helm-Bychowski, K. M., Higuchi, R. G., Palumbi, S. R., Prager, E. M., Sage, R. D., and Stoneking, M. (1985). Mitochondrial DNA and two perspectives on evolutionary genetics.Biol. Linn. Soc. 26: 375–400.Google Scholar
  39. Wolfheim, J. H. (1983).Primates of the World, University of Washington Press, Seattle.Google Scholar
  40. Zhang, Y. P., and Shi, L. M. (1989). Mitochondrial DNA polymorphism in five species ofMacaca.Chine. J. Genet. 16: 325–338.Google Scholar
  41. Zhang, Y. P., and Shi, L. M. (1991). Genetic diversity in the Chinese pangolin (Manis pentadactyla): Inferred from restriction enzyme analysis of mitochondrial DNAs.Biochem. Genet. 29: 501–508.CrossRefPubMedGoogle Scholar
  42. Zhang, Y. P., and Shi, L. M. (1992). Phylogenetic relationships of macaques: inferred from restriction enzyme analysis of mitochondrial DNA.Folia Primatol. (in press).Google Scholar
  43. Zhang, Y. P., Chen, Z. P., and Shi, L. M. (1993). Phylogeny of the slow lorises (GenusNycticebus): An approach using mitochondrial DNA restriction enzyme analysis.Int. J. Primatol. 14: 167–175.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Ya-ping Zhang
    • 1
  • Li-ming Shi
    • 1
  1. 1.Laboratory of Cellular and Molecular Evolution, Kunming Institute of ZoologyAcademia SinicaKunmingChina

Personalised recommendations

Cite article

Buy options


We use cookies to improve your experience with our site. More information